Chemistry, asked by neetugupta8428, 10 months ago

If x = 3+2√2, find the value of x2 + 1/x2​

this question is of maths plz ans. fast

Answers

Answered by rajivrtp
0

Explanation:

x = 3+2√2

=> x²= (3+2√2)²

= ( 9+8+12√2)

= 17+12√2

=> 1/x² = 1/(17+12√2)

therefore x²+1/x² = (17+12√2) + 1/(17+12√2)

=> (17+12√2) + (17-12√2) / (289-288)

= 17+17

= 34

hope this helps you

Answered by Anonymous
1

 \large\bf\underline \orange{Given:-}

  • x = 3+2√2

 \large\bf\underline \orange{To \: find:-}

  • x² + 1/x²

 \huge\bf\underline \green{Solution:-}

: \longmapsto   \sf\: {x}^{2} +  \frac{1}{ {x}^{2} } \\  \\  : \longmapsto   \sf\:(3 + 2 \sqrt{2})  {}^{2}  +  \frac{1}{ {(3 + 2 \sqrt{2}) }^{2} }  \\   \\    \bf\: \red{(a + b) {}^{2} =  {a}^{2}  +  {b}^{2} + 2ab}  \\  \\ : \longmapsto   \rm\: \small  {3}^{2}  + ( {2 \sqrt{2} )}^{2}   + 2(3)(2 \sqrt{2} )  +  \small\frac{1}{ {3}^{2}  + (2 \sqrt{2}  ) {}^{2} + 2 \times 3 \times 2 \sqrt{2}   } \\  \\ : \longmapsto   \sf\small9 + 8 + 12 \sqrt{2} +  \frac{1}{9 + 8 + 12 \sqrt{2} }  \\  \\: \longmapsto   \sf\:17 + 12 \sqrt{2}   +  \frac{1}{17 + 12 \sqrt{2} }  \\  \\  \mapsto 17 + 12 \sqrt{2}  +  \frac{1}{17 + 12 \sqrt{2} } \times  \frac{17 - 12 \sqrt{2} }{17 - 12 \sqrt{2} }  \\  \\ : \longmapsto   \bf\: \pink{ {(a + b)}(a - b) =  {a}^{2}  -  {b}^{2}}   \\  \\   : \longmapsto   \sf\:17 + 12 \sqrt{2}   +  \frac{17  - 12 \sqrt{2} }{289 - 144 \times 2}  \\  \\  : \longmapsto   \sf\:17 + 12 \sqrt{2}  +  \frac{17 -  12\sqrt{2} }{289 - 288}  \\  \\ : \longmapsto   \sf\:17  + \cancel{ 12 \sqrt{2}}   + 17  - \cancel{ 12 \sqrt{2}}  \\  \\ : \longmapsto   \bf \blue{\:34}

Similar questions