Math, asked by sujiprk670, 10 months ago

if x=3-2√2, find x-1/x

Answers

Answered by sanath16
0

Answer:

Two forces of magnitudes 3P and 2P respectively have a resultant R. If the first force is doubled, the magnitude of the resultant is also doubled. Find the angle between the forces.

Step-by-step explanation:

idk

Answered by brokendreams
0

Step-by-step explanation:

Given : The value of  x=3-2\sqrt{2}.

To find : The value of x-\frac{1}{x}

  • Formula used :

(a-b)^{2} =a^{2} +b^{2} -2ab

  • Calculation for x-\frac{1}{x}

We have the value of x which is,

x=3-2\sqrt{2}

we have to find the value of,

⇒  x-\frac{1}{x}

simplified term is,

⇒  \frac{x^{2} -1}{x}             ---(1)

we simply substitute the value of x in equation (1),

⇒  \frac{x^{2} -1}{x}  

⇒  \frac{(3-2\sqrt{2} )^{2} -1}{(3-2\sqrt{2})}

by using formula we can write (3-2\sqrt{2} )^{2}  as,

here a=3   and  b=2\sqrt{2}

(3-2\sqrt{2})^{2}=(3)^{2} +(2\sqrt{2})^{2} -2*3*(2\sqrt{2})

                 =9+8-12\sqrt{2}

                 =17+12\sqrt{2}

now the fraction is,

⇒  \frac{17+12\sqrt{2}-1}{3-2\sqrt{2} }

⇒  \frac{16+12\sqrt{2}}{3-2\sqrt{2} }

⇒  \frac{4(4+3\sqrt{2})}{(3-2\sqrt{2}) }

Hence we get the answer is \frac{4(4+3\sqrt{2})}{(3-2\sqrt{2}) }.

Similar questions