Math, asked by singhayush2125, 10 months ago

If x = 3-2√2 , find x^2+1/x^2​

Answers

Answered by AronLarry
1

Answer:

34

Step-by-step

x=3-2√2

x^2+1/x^2

=(3-2√2)^2+1/(3-2√2)^2

=9+8-12√2+1/9+8-12√2

=17-12√2+1/(17-12√2)

=17-12√2+(17+12√2)/(17-12√2)(17+12√2)

=17-12√2+(17+12√2)/17^2-(12√2)^2

=17-12√2+(17+12√2)/289-288

=17-12√2+17+12√2

=17+17

=34

Answered by raushan6198
0

Step-by-step explanation:

x = 3 - 2 \sqrt{2}  \\  {x}^{2}  +   \frac{1}{ {x}^{2} }  \\  =  {x}^{2}  +  \frac{ 1}{ {x}^{2} }  + 2 \times \frac{1}{x}  \times  \frac{1}{x}  - 2 \times  \frac{1}{x}  \times  \frac{1}{x}  \\  = ( {x +  \frac{1} {x} )}^{2}  - 2 \\  = ( {3 - 2 \sqrt{2} +  \frac{1}{3 - 2 \sqrt{2} } ) }^{2}  - 2 \\  = ( { {3}^{2}  -  {(2 \sqrt{2}) }^{2}  + 1)}^{2}  \times  \frac{1}{ {(3 - 2 \sqrt{2}) }^{2} }  - 2 \\  =  {(9 - 12 \sqrt{2} + 8 + 1) }^{2}  \times  \frac{1}{9 -  12 \sqrt{2}  + 8}  - 2 \\  =  ({18 - 12 \sqrt{2} )}^{2}  \times  \frac{1}{17 - 12 \sqrt{2} }  - 2

Similar questions