Math, asked by sujiprk670, 11 months ago

If x=3-2√2, find x^3+1/x^3​

Answers

Answered by ishwarsinghdhaliwal
1

x = 3 - 2 \sqrt{2}   \\  \frac{1}{x} =  \frac{1}{3 - 2 \sqrt{2} }  \\  \:  \:  \:  \:  \:  =  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }   \\  \:  \:  \:  \:  \:  = \frac{3 + 2 \sqrt{2} }{( {3)}^{2} - (2 \sqrt{2} ) ^{2} }  \\   \:  \:  \:  \:  \: =  \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \:  \:  \:  \:  \:  = 3 +  2\sqrt{2}   \\  =  > x +  \frac{1}{x}  =3 -  2\sqrt{2}  + 3 + 2 \sqrt{2} = 6 \\ =  >   {x}^{3}  + \frac{1}{ {x}^{3} }  = (x +  \frac{1}{x}  ) ^{3} - 3(x +  \frac{1}{x} ) \\  =  >  {x}^{3}  + \frac{1}{ {x}^{3} }  =(6) ^{3}   - 3(6) \\  =  >  {x}^{3}  + \frac{1}{ {x}^{3} }  =216 - 18 \\ =  >  {x}^{3}  + \frac{1}{ {x}^{3} }  =198

Similar questions