Math, asked by saritayadav, 1 year ago

if x=3-2√2 find x^3-1/x^3

Answers

Answered by DaIncredible
5
Heya there !!!
Here is the answer you were looking for:

Identities used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \\  {(x - y)}^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y)


x = 3 - 2 \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \\

On rationalizing the denominator we get,

 \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{( { (3)}^{2} -  {( 2\sqrt{2} )}^{2}  }  \\  \\  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{x}  = 3 + 2 \sqrt{2}  \\  \\ x -  \frac{1}{x}

Putting the values we get

x -  \frac{1}{x}  = (3 - 2  \sqrt{2}  ) - (3 + 2 \sqrt{2} ) \\  \\ x -  \frac{1}{x}  = 3 - 2 \sqrt{2}  + 3 + 2 \sqrt{2}  \\  \\ x -  \frac{1}{x}  = 6 \\

Now cubing both the sides we get

 {(x -  \frac{1}{x} )}^{3}  =  {(6)}^{3}  \\  \\  {(x)}^{3}   -   {( \frac{1}{x} )}^{3}  - 3 \times x \times  \frac{1}{x} (x  - \frac{1}{x} ) = 216 \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3(6) = 216 \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 18 = 216 \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  = 216 + 18 \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  = 234

Hope this helps!!!

If you have any doubt regarding to my answer, please ask in the comment section ^_^

@Mahak24

Thanks...
☺☺

saritayadav: thank you so much. u study in which standard?
DaIncredible: Xth
saritayadav: ook
Similar questions