Math, asked by ckdassappan, 5 months ago

,If x=3-2√2 find x²+(1/x²)

Answers

Answered by Anonymous
1

 \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

 \sf \: x = 3 - 2 \sqrt{2}

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\

 \sf \:  {x}^{2}  +  \frac{1}{ {x}^{2} }

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

We know , x = 3 - 2√2

We will find (1/x).

 \\  \sf \:  \frac{1}{x} =  \frac{1}{3 - 2 \sqrt{2} }  \\  \\  \\  \sf \: rationalising \: denominator \: ....  \\  \sf \: rationalising \: factor \: is \: (3 + 2 \sqrt{2}  \\  \\  \\  \sf \:  \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \\  \sf \:  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{(3 - 2 \sqrt{2})(3 + 2 \sqrt{2}  )}  \\  \\  \\  \sf \:  \frac{1}{x}  =   \frac{3 + 2 \sqrt{2} }{ {3}^{2}  - ( {2 \sqrt{2}) }^{2} }  \\  \\  \\  \sf \:  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \\  \\  \sf \pink{ \frac{1}{x} = 3 + 2 \sqrt{2}  } \\  \\

Now ,

 \\   \\ \sf \: x +  \frac{1}{x}  = 3 - 2 \sqrt{2}  + 3 + 2 \sqrt{2}  \\  \\  \\  \sf \: x +  \frac{1}{x}  = 6 \\  \\  \\  \sf \: squaring \: both \: sides...we \: get \\  \\  \\  \sf \: (x +  { \frac{1}{x} )}^{2}  =  {6}^{2}  \\  \\

We know ,

 \\  \boxed{ \bf \:  {(a + b)}^{2} =  {a}^{2}  +  {b}^{2}  + 2ab } \\

Here ,

  • a = x
  • b = 1/x

Putting values , we get ,

 \\  \\  \sf \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2( \cancel{x})( \frac{1}{ \cancel{x}} ) =  36 \\  \\  \\  \sf \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 36 - 2 \\  \\  \\     \therefore\underline{\boxed{\sf \:   \green{{x}^{2}  +  \frac{1}{ {x}^{2} }  = 34}}} \\  \\  \\

More identities :-

  • (a-b)² = a² + b² - 2ab

  • (a+b)(a-b) = a² - b²

  • (a+x)(a+y) = a² + (x+y)a + xy

Similar questions