Math, asked by yashaswinisks28, 1 year ago

if x=3+2√2 find x³-1/x³​

Answers

Answered by mnandhini335
0

Step-by-step explanation:

3+2√2^3-1/3+2√2^3

solve this u will get the answer easily

Answered by codiepienagoya
1

The\  \ value\  \ of: x^{3}-\frac{1}{x^{3}} \ =  \ (99-70\sqrt2)

Step-by-step explanation:

Given that:  x= 3+2\sqrt{2}\\\\\\

Find:  x^{3}-\frac{1}{x^{3}}\\

x^3= (3+2\sqrt{2})^3\\

Formula:  (x+y)^3=x^3+y^3+3\cdot x \cdot y(x+y)\\

(x+y)^3=x^3+y^3+3 x^2y+3xy^2\\

Solve the value of : x^{3}

(3+2\sqrt{2})^3= 3^3+(2\sqrt2)^3+3\cdot 3\cdot2\sqrt{2}( 3+2\sqrt{2})\\

(3+2\sqrt{2})^3=27+16\sqrt2+18\sqrt2( 3+2\sqrt{2})\\

(3+2\sqrt{2})^3=27+16\sqrt2+54\sqrt2+72\\

(3+2\sqrt{2})^3=99+70\sqrt2\\

When value of x^{3} is equal to 99+70\sqrt2\\  So, \frac{1}{x^3} value is equal to \frac{1}{99+70\sqrt2}

x^{3}-\frac{1}{x^{3}} =  99+70\sqrt2 \ - \  \frac{1}{99+70\sqrt2}

x^{3}-\frac{1}{x^{3}} = \frac {(99+70\sqrt2)(99+70\sqrt2)\ -\ 1}{(99+70\sqrt2)}\\\\

x^{3}-\frac{1}{x^{3}} = \frac{(99+70\sqrt2 )^2\ - \  1  }{99+70\sqrt2} \\

Formula:  (a-b)^{2}=(a+b)(a-b)

x^{3}-\frac{1}{x^{3}} = \frac{(99+70\sqrt2 )^2\ - \  (1)^2  }{99+70\sqrt2} \\

x^{3}-\frac{1}{x^{3}} = \frac {(99+70\sqrt2)(99-70\sqrt2)}{(99+70\sqrt2)}\\\\

x^{3}-\frac{1}{x^{3}}= (99-70\sqrt2)

Learn more:

  • formula of (a+b)^3: https://brainly.in/question/5177811

Similar questions