Math, asked by faizalam7318221, 7 months ago

If x= 3 +2√2, then check whether x + 1/x is rational or irrational​

Answers

Answered by snehitha2
0

Answer:

rational

Step-by-step explanation:

x= 3+2√2

\frac{1}{x} =\frac{1}{3+2\sqrt{2}}  \\\\ rationalising \ factor=3-2\sqrt{2} \\\\ \frac{1}{x} =\frac{1}{3+2\sqrt{2}} \times \frac{3-2\sqrt{2}}{3-2\sqrt{2}} \\\\ \frac{1}{x} =\frac{3-2\sqrt{2}}{(3+2\sqrt{2})(3-2\sqrt{2})} \\\\ \frac{1}{x} =\frac{3-2\sqrt{2}}{3^2-(2\sqrt{2})^2} \\\\  \frac{1}{x} =\frac{3-2\sqrt{2}}{9-4(2)} \\\\  \frac{1}{x} =\frac{3-2\sqrt{2}}{9-8} \\\\  \frac{1}{x} =\frac{3-2\sqrt{2}}{1} \\\\  \frac{1}{x} =3-2\sqrt{2}

→ x + 1/x = 3 + 2√2 + 3 - 2√2

             = 6      [ rational number ]

Similar questions