Math, asked by SREWAN, 10 months ago

If x=3+2√2 then,find the value of x^1/2 + x^1/2

Answers

Answered by AlluringNightingale
1

Answer:

√x + 1/√x = 2√2

Solution:

  • Given : x = 3 + 2√2
  • To find : √x + 1/√x = ?

We have ;

=> x = 3 + 2√2

=> x = 2 + 1 + 2√2

=> x = 2 + 2√2 + 1

=> x = (√2)² + 2•√2•1 + 1²

=> x = (√2 + 1)²

=> √x = √2 + 1

Now,

If √x = √2 + 1

Thus,

=> 1/√x = 1/(√2 + 1)

=> 1/√x = (√2 - 1)/(√2 + 1)(√2 - 1)

=> 1/√x = (√2 - 1)/[(√2)² - 1²]

=> 1/√x = (√2 - 1)/(2 - 1)

=> 1/√x = (√2 - 1)/1

=> 1/√x = √2 - 1

Now,

=> √x + 1/√x = (√2 + 1) + (√2 - 1)

=> √x + 1/√x = √2 + 1 + √2 - 1

=> √x + 1/√x = 2√2

Hence,

Required answer is ; 2√2

Answered by sandy1816
1

x = 3 + 2 \sqrt{2}  \\  \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} } \\  \frac{1}{x}   =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \frac{1}{x}  = 3 - 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 6 \\ x +  \frac{1}{x}  + 2 = 8 \\ ( { \sqrt{x}  +  \frac{1}{ \sqrt{x} } })^{2}  = 8  \\ \sqrt{x}  +  \frac{1}{ \sqrt{x} }  = 2 \sqrt{2}

.

Similar questions