Math, asked by LakshayAhlawat, 11 months ago

if x= 3+2√2,then find the value of x+1\x​

Answers

Answered by Anonymous
10

Given:

x=3+2√2

To find the value of,

 \sf{x +  \frac{1}{x} } \\  \\

Here,

We find the value of 1/x and then,add it with that of x. Thus, deriving the required value.

Now,

What is rationalising?

Rationalising is a mathematical tool or procedure which is applied to remove the radical signs either by multiplying or dividing.

So,

 \sf{ \frac{1}{x} =  \frac{1}{3 + 2 \sqrt{2} } }  \\  \\  \:  \:  \:  \:  \:  =  \sf{ \frac{1}{3 + 2 \sqrt{2} } \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  } \\  \\   \:  \:  \:  \:  =  \sf{\frac{3 - 2 \sqrt{2} }{3 {}^{2} - 2 \sqrt{2 {}^{2} }  }}  \ \\  \\  \:  \:  \:    =   \sf{\frac{3 - 2 \sqrt{2} }{9 - 8}}  \\  \\  \implies \:  \sf{ \frac{1}{x} = 3 - 2 \sqrt{2}  }

On adding both the term,

(3+2√2)+(3-2√2)

=3+3

=6

 \sf{6 \: is \: the \: value \: of \: x +  \frac{1}{x} } \\  \\

Similar questions