if x=3+2√2,then find the value of √x-√1/√x
Answers
Answer:
2√2
Step-by-step explanation:
Given----> x = 3 + 2√2
To find-----> Value of ( √x - 1 / √x )
Solution----> ATQ,
x = 3 + 2√2
= 1 + 2 + 2√2
= ( 1 )² + ( √2 )² + 2 ( 1 ) ( √2 )
We know that,
( a + b )² = a² + b² + 2ab , applying it we get ,
= ( 1 + √2 )²
Now , √x = √( 1 + √2 )²
= ( 1 + √2 )
Now,
1 / √x = 1 / ( 1 + √2 )
Multiplying in numerator and denominator by conjugate of denominator by ( √2 - 1 ) , we get,
=> 1 / √x = ( √2 - 1 ) / ( √2 + 1 ) ( √2 - 1 )
We know that,
( a² - b² ) = ( a + b ) ( a - b ) , applying it in denominator , we get,
= ( √2 - 1 ) / { ( √2 )² - ( 1 )² }
= ( √2 - 1 ) / ( 2 - 1 )
= ( √2 - 1 ) / 1
=> 1 / √x = ( √2 - 1 )
Now, √x - 1 / √x = ( 1 + √2 ) + ( √2 - 1 )
= 2√2