If, x=3-2√2 then find the value of√x+1/√x
Answers
Answer:
√x + [1/√x] = 2√2 is the correct answer.
Step-by-step explanation:
Substituting the value of x as 3 - 2√2 in the equation √x + [1/√x].
⇒ √x + [1/√x] = √(3-2√2) + [1/√(3-2√2)]
⇒ √x + [1/√x] = √(1-√2)² + [1/√(1-√2)²]
⇒ √x + [1/√x] = √(√2-1)² + [1/√(√2-1)²]
⇒ √x + [1/√x] = √2-1 + [1/√2-1]
⇒ √x + [1/√x] = √2-1 + [(√2+1)/(2-1)] [ Rationalising ]
⇒ √x + [1/√x] = √2 - 1 + √2 + 1
⇒ √x + [1/√x] = 2√2 ←ANSWER
PLEASE MARK MY ANSWER AS THE BRAINLIEST!!!!!
Solution :-
x = 3 - 2√2
It can be written as
⇒ x = (√2)² + 1² - 2(√2)(1)
⇒ x = (√2 - 1)²
[ Because (a - b)² = a² + b² - 2ab ]
Taking square root on both sides
⇒ √x = ± √(√2 - 1)²
⇒ √x = ± (√2 - 1)
⇒ √x = (√2 - 1) or (1 - √2 )
Finding 1/√x value
when √x = √2 - 1
Rationalizing the denominator
When √x = 1 - √2
Now, √x + 1/√x
When √x = √2 - 1 and 1/√x = √2 + 1
√x + 1/√x = √2 - 1 + (√2 + 1)
= √2 - 1 + √2 + 1 = 2√2
When √x = 1 - √2 and 1/√x = - 1 - √2
√x + 1/√x = 1 - √2 + (-1 - √2) = 1 - √2 - 1 - √2 = - 2√2
Therefore the value of √x + 1/√x is 2√2 or - 2√2.