Math, asked by shreyaSingh2022, 1 month ago

If x = 3 + 2√2, then find the value of √x - 1/√x.​

Answers

Answered by llmissqueenkissll
1

Answer:

√3+2√2-1/3+2√2 solve and get answer

plz Brainlist me

Answered by Salmonpanna2022
2

Step-by-step explanation:

\mathsf{Given :\;x = 3 + 2\sqrt{2}}

\mathsf{\implies x = 1 + 2 + 2\sqrt{2}}

\mathsf{\implies x = (1)^2 + \big(\sqrt{2}\big)^2 + 2\sqrt{2}}}

Above expression is in the form :

a² + b² + 2ab which is equal to (a + b)²

\mathsf{Where : a = 1\;and\;b = \sqrt{2}}

\mathsf{\implies (1)^2 + \big(\sqrt{2}\big)^2 + 2\sqrt{2} = \big(1 + \sqrt{2}\big)^2}

\mathsf{\implies x = \big(1 + \sqrt{2}\big)^2}

\mathsf{\implies \sqrt{x} = \sqrt{\big(1 + \sqrt{2}\big)^2}}

\implies \boxed{\mathsf{\sqrt{x} = 1 + \sqrt{2}}}

\mathsf{\implies \dfrac{1}{\sqrt{x}} = \dfrac{1}{1 + \sqrt{2}}}

\mathsf{Multiplying\;numerator\;and\;denominator\;with\;1 - \sqrt{2},\;We\;get :}

\mathsf{\implies \dfrac{1}{\sqrt{x}} = \dfrac{1 - \sqrt{2}}{(1 + \sqrt{2})(1 - \sqrt{2})}}

We know that : (a + b)(a - b) = a² - b²

\mathsf{\implies \dfrac{1}{\sqrt{x}} = \dfrac{1 - \sqrt{2}}{(1)^2 - (\sqrt{2})^2}}

\mathsf{\implies \dfrac{1}{\sqrt{x}} = \dfrac{1 - \sqrt{2}}{1 - 2}}

\mathsf{\implies \dfrac{1}{\sqrt{x}} = \dfrac{1 - \sqrt{2}}{-1}}

\implies\boxed{\mathsf{\dfrac{1}{\sqrt{x}} = \sqrt{2} - 1}}

\mathsf{\implies \sqrt{x} - \dfrac{1}{\sqrt{x}} = 1 + \sqrt{2} - (\sqrt{2} - 1)}

\mathsf{\implies \sqrt{x} - \dfrac{1}{\sqrt{x}} = 1 + \sqrt{2} - \sqrt{2} + 1}

\mathsf{\implies \sqrt{x} - \dfrac{1}{\sqrt{x}} = 2}

Similar questions