if X=3+2√2 then find the value of
X+1/X
plz answer faaaaaaaast
Answers
Answer:
Given is the value of x = \tt{3 + 2\sqrt 2}3+2
2
We need to find the value of -》 \begin{gathered}\tt{x + \frac{1}{x}}\\\end{gathered}
x+
x
1
Put the value of x in this formula and then solve it :-
\begin{gathered}\tt{3 + 2\sqrt 2 + \frac{1}{3 + 2\sqrt 2}}\\\end{gathered}
3+2
2
+
3+2
2
1
Now, we've written the equation. To get the value of \begin{gathered}\tt{\frac{1}{3 + 2\sqrt 2}}\\\end{gathered}
3+2
2
1
, we need to multiply and divide it by \tt{3 - 2\sqrt 2}3−2
2
.
Thus, the value of \begin{gathered}\tt{\frac{1}{3 + 2\sqrt 2}}\\\end{gathered}
3+2
2
1
will be :-
\begin{gathered}\tt{\frac{1}{3 + 2\sqrt 2}\times \frac{3 - 2\sqrt 2}{3 - 2\sqrt 2}}\\\end{gathered}
3+2
2
1
×
3−2
2
3−2
2
Solve this formed equation further
=》 \begin{gathered}\tt{\frac{3 - 2\sqrt 2}{9 - 8}}\\\end{gathered}
9−8
3−2
2
Step-by-step explanation:
X=3+2√2