if x=3-2√2 then find the value of [x^2-1/x^2
Answers
Answered by
6
Given,
x = 3 - 2√2
Find the value of -
- 1 /
Given is the value of x..
So firstly we will find 1/x..
1/x = 1/3-2√2
Rationalizing the denominator,
= (1/ 3 - 2√2)×(3 + 2√2 / 3 - 2√2)
= 3 + 2√2 / - (2√2)^2
= 3 + 2√2 / 9 - 8
= 3 + 2√2 / 1
= 3 + 2√2
- 1/ =
(3 - 2√2)^2 - (3 + 2√2)^2
= - (2√2)^2 + 2 × 3 × 2√2 - [ + (2√2)^2 + 2 × 3 × 2√2]
= 9 - 8 + 12√2 - (9 + 8 + 12√2)
= 9 - 8 + 12√2 - 9 - 8 - 12√2
= -16
x = 3 - 2√2
Find the value of -
- 1 /
Given is the value of x..
So firstly we will find 1/x..
1/x = 1/3-2√2
Rationalizing the denominator,
= (1/ 3 - 2√2)×(3 + 2√2 / 3 - 2√2)
= 3 + 2√2 / - (2√2)^2
= 3 + 2√2 / 9 - 8
= 3 + 2√2 / 1
= 3 + 2√2
- 1/ =
(3 - 2√2)^2 - (3 + 2√2)^2
= - (2√2)^2 + 2 × 3 × 2√2 - [ + (2√2)^2 + 2 × 3 × 2√2]
= 9 - 8 + 12√2 - (9 + 8 + 12√2)
= 9 - 8 + 12√2 - 9 - 8 - 12√2
= -16
Answered by
0
Answer:
Step-by-step explanation:
Given,
x = 3 - 2√2
Find the value of -
- 1 /
Given is the value of x..
So firstly we will find 1/x..
1/x = 1/3-2√2
Rationalizing the denominator,
= (1/ 3 - 2√2)×(3 + 2√2 / 3 - 2√2)
= 3 + 2√2 / - (2√2)^2
= 3 + 2√2 / 9 - 8
= 3 + 2√2 / 1
= 3 + 2√2
- 1/ =
(3 - 2√2)^2 - (3 + 2√2)^2
= - (2√2)^2 + 2 × 3 × 2√2 - [ + (2√2)^2 + 2 × 3 × 2√2]
= 9 - 8 + 12√2 - (9 + 8 + 12√2)
= 9 - 8 + 12√2 - 9 - 8 - 12√2
= -16
Similar questions
Social Sciences,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Physics,
1 year ago
Math,
1 year ago