Math, asked by tanisha130107, 8 months ago

if x=3+2√2,then find the value of x^2+1/x^2 and x^3+1/x^3

Answers

Answered by Anonymous
23

Answer:

\rightarrow (x +  \frac{1}{x}  {)}^{3}=198

\rightarrow  (x +  \frac{1}{x}  {)}^{2}  = 34

Step-by-step explanation:

Given Information -

x = 3 + 2 \sqrt{2}

To Find-

  • (x + \frac{1}{x}  {)}^{3}

  •  (x +  \frac{1}{x}  {)}^{2}

Solution -

Step-1=Find the value of Reciprocal of 'x' -

  • \color{orange}  {x = 3 + 2 \sqrt{2}}

  • \color{orange}   {\frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }}

  • \color{orange}  {\frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }}

  • \color{orange}  {\frac{3 - 2 \sqrt{2} }{(3 + 2 \sqrt{2} )(3  - 2 \sqrt{2} )}}

  • \color{orange}  { \frac{3 - 2 \sqrt{2} }{(3 + 2 \sqrt{2} )(3  - 2 \sqrt{2} )}}

  •  \color{orange}  {\frac{3 - 2 \sqrt{2} }{(3 {)}^{2}  - (2 \sqrt{2}  {)}^{2} }}

  •   \color{orange}  {\frac{3 - 2 \sqrt{2} }{9 - 8}}

  • \huge\sf\red {\frac{1}{x}  =  3 - 2 \sqrt{2}}

ㅤ✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏

Step-2= Find the value of  \underline{x +  \frac{1}{x}} -

  • \color{purple} {x +  \frac{1}{x}}

  •  \color{purple}{3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}}

  •  \color{purple} {3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}}

  •  \color{purple} {3 + 3}

  • \huge\sf\blue{ x +  \frac{1}{x}=6}

ㅤ✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏

Step-3=Find The value of \underline{(x +  \frac{1}{x}  {)}^{3}} -

  •  \color{green}{(x +  \frac{1}{x}  {)}^{3}  = (x +  \frac{1}{x}  {)}^{3}  - 3(x  + \frac{1}{x} )}

  •  \color{green}{{6}^{3}  - (3 \times 6)}

  •  \color{green}{(6  \times 6 \times 6)- (3 \times 6)}

  •  \color{green}{216 - 18}

  •  \huge\sf\color{lime}{(x +  \frac{1}{x}  {)}^{3}=198}

✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏

Step-4=Finding \underline{(x +  \frac{1}{x}  {)}^{2}} -

  • \color{magenta}{ (x +  \frac{1}{x}  {)}^{2}  = (x +  \frac{1}{x}  {)}^{2}  - 2}

  • \color{magenta}{6² -2}

  • \color{magenta}{36 - 2}

  • \huge\sf\color{maroon}{(x +  \frac{1}{x}  {)}^{2}=34}
Similar questions