Math, asked by rakeshsurbhi11, 1 month ago

If x = 3 + 2√2 , then find the value of x² + 1 / x² and x³ + 1 / x³.​

Answers

Answered by abhinavmike85
18

\huge{✪}\huge{\underline{\mathcal{Answer}}}

  1. 34
  2. 198

\\\\

\huge{\underline{\mathcal{Formulas\:Used}}}

  • x^2+\dfrac{1}{x^2}={(x+\dfrac{1}{x})}^2-2\\\\
  • x^3+\dfrac{1}{x^3}=(x+\dfrac{1}{x})(x^2+\dfrac{1}{x^2}-1)

\\\\

\huge{\underline{\mathcal{Steps:}}}

 \dfrac{1}{x}  =  \dfrac{1}{3 + 2 \sqrt{2} }  \\  \\  \dfrac{1}{x}  =  \dfrac{1}{3 + 2 \sqrt{2} }  \times  \dfrac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\  \dfrac{1}{x}  =  3 - 2 \sqrt{2}

\\

Now adding x and \dfrac{1}{x} to get x+\dfrac{1}{x}

x +  \dfrac{1}{x}  = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}  \\  \\ x +  \dfrac{1}{x}  = 6 \:  \:  \: ....(1)

\\\\

Part 1:

 {x}^{2}  +  \dfrac{1}{ {x}^{2} }   =   {(x +  \dfrac{1}{x} )}^{2}   - 2 \\  \\   {6}^{2} - 2  \\  \\  36 - 2  \\  \\  34

\\\\

Part 2:

 {x}^{3}  +  \dfrac{1}{ {x}^{3} }  = (x +  \dfrac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} }  - 1) \\  \\  {x}^{3}  +  \dfrac{1}{ {x}^{3} } = 6(34 - 1) \\  \\  {x}^{3}  +  \dfrac{1}{ {x}^{3} } = 6 \times 33 = 198

\\\\\fbox{\fbox{\fbox{\fbox{\huge{\underline{\underline{\sf{\green{Hope\:it\:helps}}}}}}}}}

Answered by tanishaneginegi903
0

Answer:

i know u r happy today i am talking points

Similar questions