Math, asked by mugdho5763, 1 year ago

If x=3+2✓2,Then prove that (✓x)³-(1/✓x)³=14

Answers

Answered by ThinkingBoy
0

x = 3+2\sqrt{2}

LHS =  \sqrt{x} ^{3} - \frac{1}{\sqrt{x} ^{3}  }

       Let \sqrt{x} = p

       x = p^{2}

     

Therefore,

 \sqrt{x} ^{3} - \frac{1}{\sqrt{x} ^{3}  }

= p^{3} - \frac{1}{p^{3} }

= (p - \frac{1}{p})(p^{2} + \frac{1}{p^{2} } + p*\frac{1}{p} )

= \frac{p^{2}-1 }{p} (p^{2}  +\frac{1}{p^{2} } +1)

Substituting    x = p^{2}

\frac{x-1}{\sqrt{x} } (x+\frac{1}{x}+1)

Substituting x = 3+2\sqrt{2}

\frac{3+\sqrt{2}-1}{\sqrt{3+\sqrt{2} }}  (\frac{(3+\sqrt{2}) ^{2}+1+3+\sqrt{2}  }{3+\sqrt{2} })

= \frac{2+\sqrt{2} }{\sqrt{3+\sqrt{2} } }(\frac{9+2+6\sqrt{2}+4+\sqrt{2}  }{3+\sqrt{2} })

= \frac{2+\sqrt{2} }{\sqrt{3+\sqrt{2} } }(\frac{15+7\sqrt{2}}{3+\sqrt{2} })

= \frac{30+15\sqrt{2}+14\sqrt{2}+28  }{\sqrt{3+\sqrt{2} } }*\frac{1}{3+\sqrt{2} }

= \frac{58+29\sqrt{2} }{\sqrt{3+\sqrt{2} } } *\frac{1}{3+\sqrt{2} }

= \frac{29(2+\sqrt{2}) }{(3+\sqrt{2}) ^{\frac{3}{2} } }

Please verify the question again

HOPE IT HELPS !!

Similar questions