Math, asked by smita070613, 4 months ago

if x=3-2√2, then value of x+1/x is​

Answers

Answered by LiteCoral
2

Step-by-step explanation:

Answer in the attachment

Attachments:
Answered by Anonymous
0

 \\  \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

 \sf \: x = 3 - 2 \sqrt{2}

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\  \sf \: x +  \frac{1}{x}  \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

 \sf \: x = 3 - 2 \sqrt{2}  \\  \\  \\  \sf \: taking \: reciprocal \: we \: get \\  \\  \\  \sf \:  \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \\  \\  \\  \sf \: rationalising \: factor \: is \: (3 + 2 \sqrt{2} ) \\ \\   \\  \sf \:  \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\   \\ \\  \sf \:  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{(3 - 2 \sqrt{2} )(3 + 2 \sqrt{2}) }  \\  \\  \\  \sf \:  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{ {3}^{2}  - ( {2 \sqrt{2}) }^{2} }  \\  \\  \\  \sf \:  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \\  \\  \sf  \:   \blue{\frac{1}{x}  = 3 + 2 \sqrt{2} } \\  \\

Also ,

 \\  \sf \:  \blue{x = 3 - 2 \sqrt{2} } \\  \\  \\  \sf \: adding \: both \: we \: get \\  \\  \\  \sf \: x +  \frac{1}{x}  = 3 -  \cancel{2 \sqrt{2} } + 3 + \cancel{ 2 \sqrt{2} } \\  \\  \\  \therefore \sf \:   \boxed{ \sf \: \orange{x +  \frac{1}{x} = 6 }}

Similar questions