Math, asked by abhi1041, 1 year ago

if x=3+2√2 then xsquare+1/xsquare

Answers

Answered by DaIncredible
3
Hey friend,
Here is the answer you were looking for:
x = 3 + 2 \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\

On rationalizing the denominator we get :

 \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\

Using the identity :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{ {(3)}^{2}  -  {(2 \sqrt{2}) }^{2} }  \\  \\  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \\   \frac{1}{x}  = 3 + 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = (3 - 2 \sqrt{2} ) + (3  +  2 \sqrt{2} ) \\  \\ x +  \frac{1}{x} = 3 - 2 \sqrt{2}   + 3  +  2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 6 \\

On squaring both the sides we get,

 {(x +  \frac{1}{x}) }^{2}  =  {(6)}^{2}  \\  \\  {x}^{2}  +  {( \frac{1}{x} )}^{2}  + 2 \times x \times  \frac{1}{x}  = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 36 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Similar questions