Math, asked by mudilmathur, 2 months ago

if x=√3+√2/√3-√2 and y=√3-√2/√3+√2, find the value of (x+y)²
please answer correctly

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x = \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }

and

\rm :\longmapsto\:y = \dfrac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3}  +   \sqrt{2}  }

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: {(x + y)}^{2}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\rm :\longmapsto\: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy

\rm :\longmapsto\: {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy

\rm :\longmapsto\:(x + y)(x - y) =  {x}^{2} -  {y}^{2}

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:x = \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }

On rationalizing the denominator, we get

\rm :\longmapsto\:x = \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \times \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

\rm :\longmapsto\:x = \dfrac{ {( \sqrt{3} +  \sqrt{2})}^{2} }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} }

\rm :\longmapsto\:x = \dfrac{3 + 2 + 2 \sqrt{6} }{3 - 2}

\rm :\longmapsto\:x = \dfrac{5+ 2 \sqrt{6} }{1}

\bf\implies \:x = 5 + 2 \sqrt{6}

Now,

Consider,

\rm :\longmapsto\:y = \dfrac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3}  +   \sqrt{2}  }

On rationalizing the denominator, we get

\rm :\longmapsto\:y = \dfrac{ \sqrt{3}  -  \sqrt{2}  }{ \sqrt{3}  +   \sqrt{2}  }  \times \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }

\rm :\longmapsto\:y = \dfrac{ {( \sqrt{3}  -   \sqrt{2})}^{2} }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} }

\rm :\longmapsto\:y = \dfrac{3 + 2  -  2 \sqrt{6} }{3 - 2}

\rm :\longmapsto\:y = \dfrac{5  -  2 \sqrt{6} }{1}

\bf\implies \:y = 5  -  2 \sqrt{6}

Consider,

\rm :\longmapsto\: {(x + y)}^{2}

 \: \rm=  \:  \:  {(5 + 2 \sqrt{6} + 5 - 2 \sqrt{6})}^{2}

 \: \rm=  \:  \:  {(10)}^{2}

 \: \rm=  \:  \: 100

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions