Math, asked by geneous, 1 year ago

if x = √3+√2/√3-√2 and y = √3-√2/√3+√2 find x^2+y^2+xy

Answers

Answered by Anonymous
3
Heya , here .

______________________________
Solution .
------------------------------------–----------------

x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \\  \\  =  >  \frac{( { \sqrt{3} +  \sqrt{2} ) }^{2} }{ {( \sqrt{3}) }^{2} - ( \sqrt{2}  {)}^{2}  }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: (after \:  \: rationalisation \:  \: ) \\  \\  =  >  \frac{( \sqrt{3} {)}^{2} + ( \sqrt{2}   {)}^{2}  + 2. \sqrt{3}. \sqrt{2}   }{3 - 2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  |(a + b {)}^{2} =  {a}^{2}  + 2ab +  {b}^{2}  |  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   |(a + b)(a - b) =  {a}^{2} -  {b}^{2}  |  \\  \\  =  > 3 + 2 + 2 \sqrt{6}  \\ x = 5 + 2 \sqrt{6}  \\  =  >  {x}^{2}  = (5 + 2 \sqrt{6}   {)}^{2}  \\  =  > ( {5})^{2}  + (2 \sqrt{6}  {)}^{2}  + 2.5.2 \sqrt{6}  \\  =  >  {x}^{2}  = 25 + 24 + 20 \sqrt{6}  \\  =  > 49 + 20 \sqrt{6}  \\  =  >  {x}^{2}  = 49 + 20 \sqrt{6}  \\  \\ similarly \:  \:  \\  {y}^{2}  = 49 - 20 \sqrt{6}  \\  \\ now \: \\  {x}^{2}  +  {y}^{2} = 49 + 20 \sqrt{6}  + 49 - 20 \sqrt{6}  \\  \\  =  > 98 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: answer
_______________________________

Hope it's helps you.
☺☺✌

geneous: but isme xy ki value kaise ayegi
Similar questions