Math, asked by ishwarya2798, 1 month ago

if X=(√3+√2÷√3-√2) and Y=(√3-√2÷√3+√2) Then find a) X^2+Y^2 b) X^2Y+Y^2X​

Answers

Answered by mathdude500
4

Given :-

\rm :\longmapsto\:x = \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

and

\rm :\longmapsto\:y = \dfrac{ \sqrt{3}  -   \sqrt{2}  }{ \sqrt{3}   +   \sqrt{2} }

To Find :-

\rm :\longmapsto\:(i) \:  {x}^{2} +  {y}^{2}

\rm :\longmapsto\:(ii) \:  {x}^{2}y +  {y}^{2}x

Identities Used :-

\boxed{ \sf \:  {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}

\boxed{ \sf \:  {x}^{2} -  {y}^{2} = (x + y)(x - y)}

\boxed{ \sf \:  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}

Solution :-

Given that,

 \red{\bf :\longmapsto\:x = \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }}

On multiply and divide by conjugate of denominator,

\:  \: \rm  =  \:  \: \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

\:  \: \rm  =  \:  \: \dfrac{ {( \sqrt{3}  +  \sqrt{2}) }^{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2})}^{2}  }

\:  \: \rm  =  \:  \: \dfrac{3 + 2 + 2 \sqrt{6} }{3 - 2}

\:  \: \rm  =  \:  \: 5 + 2 \sqrt{6}

  \:  \:  \:  \:  \:  \:  \:  \: \red{\bf :\implies\:x = \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2}} = 5 + 2 \sqrt{6} }

Also, Given that,

 \green{\bf :\longmapsto\:x = \dfrac{ \sqrt{3}  -   \sqrt{2}  }{ \sqrt{3}   +   \sqrt{2} }}

On multiply and divide by conjugate of denominator,

\:  \: \rm  =  \:  \: \dfrac{ \sqrt{3}  -   \sqrt{2}  }{ \sqrt{3}   +   \sqrt{2} }  \times \dfrac{ \sqrt{3}  -   \sqrt{2}  }{ \sqrt{3}   -   \sqrt{2} }

\:  \: \rm  =  \:  \: \dfrac{ {( \sqrt{3}   -   \sqrt{2}) }^{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2})}^{2}  }

\:  \: \rm  =  \:  \: \dfrac{3 + 2  -  2 \sqrt{6} }{3 - 2}

\:  \: \rm  =  \:  \: 5  -  2 \sqrt{6}

  \:  \:  \:  \:  \:  \:  \:  \: \green{\bf :\implies\:x = \dfrac{ \sqrt{3}  -   \sqrt{2}  }{ \sqrt{3}   +  \sqrt{2}} = 5  -  2 \sqrt{6} }

Now,

Consider (i)

 \blue{\bf :\longmapsto\: {x}^{2} +  {y}^{2}}

\:  \: \rm  =  \:  \:  {(5 + 2 \sqrt{6} )}^{2} +  {(5 - 2 \sqrt{6})}^{2}

\:  \: \rm  =  \:  \: 2\bigg( {5}^{2} +  {(2 \sqrt{6} )}^{2}\bigg)

\:  \: \rm  =  \:  \: 2(25 + 24)

\:  \: \rm  =  \:  \: 2 \times 49

\:  \: \rm  =  \:  \: 98

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \blue{\bf :\implies\: {x}^{2} +  {y}^{2} = 98}

Consider (ii)

 \pink{\bf :\longmapsto\: {x}^{2}y +  {xy}^{2}}

\:  \: \rm  =  \:  \: xy(x + y)

\:  \: \rm  =  \:  \: (5 + 2 \sqrt{6})(5 - 2 \sqrt{6})(5 +  \cancel{2 \sqrt{6}}+ 5 -  \cancel{2 \sqrt{6}})

\:  \: \rm  =  \:  \: (25 - 24)(10)

\:  \: \rm  =  \:  \: 10

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \pink{\bf :\implies\: {x}^{2}y +  {xy}^{2} = 10}

Additional Information :-

More Identities to know :-

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions