Math, asked by samcabraham04, 1 year ago

if x=√3+√2/√3-√2 and y =√3-√2/√3+√2, then find the value of x^2+y^2 -10xy


samcabraham04: someone answer

Answers

Answered by TooFree
12

Steps to find the answer:

Step 1: Find x²

Step 2: Find y²

Step 3: Find 10xy

Step 4: Then we combine

-----

-----

-----

Step 1: Find x²

  x =  \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}

Rationalise the denominator:

  x =  \dfrac{(\sqrt{3} + \sqrt{2}) (\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2}) (\sqrt{3} + \sqrt{2})}

 x = (\sqrt{3} + \sqrt{2} )^2

 x = (\sqrt{3})^2 + 2 \sqrt{3}\sqrt{2} + (\sqrt{2} )^2

 x = 5 + 2\sqrt{6}

----

Step 2: Find y²

 y =  \dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}

Rationalise the denominator:

  y =  \dfrac{(\sqrt{3} - \sqrt{2}) (\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2}) (\sqrt{3} - \sqrt{2})}

 y = (\sqrt{3} - \sqrt{2} )^2

 y = 5 - 2\sqrt{6}

---

Step 3: Find 10xy:

 10xy = 10 (5 + 2\sqrt{6})(5 - 2\sqrt{6} )

 10xy = 10 ( (5)^2 -  (2\sqrt{6})^2 )

 10xy = 10

---

Step 4: x² + y² - 10xy:

 x^2 + y^2 - 10xy = (5 + 2\sqrt{6} )^2 +  (5 - 2\sqrt{6} )^2  - 10

 x^2 + y^2 - 10xy = 25 + 2(5)(2\sqrt{6}) + (2\sqrt{6} )^2  + 25 - 2(5)(2\sqrt{6}) + (2\sqrt{6} )^2  - 10

 x^2 + y^2 - 10xy = 25 + 24 + 25  + 24  - 10

 x^2 + y^2 - 10xy = 88

Answer: 88


TooFree: The steps are very long and I have skipped showing some of the detailed steps but I try to keep the core steps there. I hope you can understand the steps.
Similar questions