If x=√3+√2÷√3-√2 and y=√3-√2÷√3+√2 then find the value of x×x+y×y
Answers
Answered by
4
rationalising the denominator
x = ( √3 + √2 ÷ √3 - √2 )× (√3 + √2 / √3 + √2)
= 3+ 2√6 +2 / 3 - 2
= 5+2√6
y= (√3 - √2 ÷ √3 + √2) × (√3 - √2 / √3 - √2)
= 3 - 2√6 + 2 / 3 - 2
= 5 - 2√6
now
x^2 + y^2
(5+2√6)^2 + (5-2√6)^2
25 + 20√6 + 24 + 25 - 20√6 + 24
49 + 20√6. +. 49 - 20√6
98
sampadagupta:
please mark as brainliest
Answered by
8
Rationalize it
x = 5 + 2√6
When we solve y in similar way we get
y = 5 - √6
Therefore,
x² + y²
= (5 + 2√6)² + (5 - 2√6)²
= {25 + 2 × 5 × 2√6 + (2√6)²} + {25 - 2 × 5 × 2√6 + (2√6)²)
= (25 + 20√6 + 24) + (25 - 20√6 + 24)
= 49 + 20√6 + 49 - 20√6
= 98
Similar questions