Math, asked by singh5115, 1 year ago

if x=√3+√2/√3-√2 and y=√3-√2/√3+√2, then find the value of x2+y2-10xy

Answers

Answered by abhi569
6
 \bold{ x = \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } } \\ \\ \\ \mathbf{ \underline{By \: rationalization}} \\ \\ \\ \bold{ \: x = \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \times \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} } \: \: \: \: \: \: \: \: \: \rightarrow x = \frac{3 + 2 + 2 \sqrt{6} }{3 - 2} \: \: \: \: \: \: \: \: \: \rightarrow \: x = 5 + 2 \sqrt{6} } \: \: \: \: \: \: \: \: \: \: \: \: ...(i)

 \bold{y = \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} + \sqrt{2} } } \\ \\ \\ \bold{ \: \underline{ By \: rationalization}} \\ \\ \\ \bold{y = \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} + \sqrt{2} }\times \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \: \: \: \: \: \: \: \: \: \rightarrow \: y = \frac{3 + 2 - 2 \sqrt{6}}{3 - 2} \: \: \: \: \: \: \: \: \rightarrow \: y = 5 - 2 \sqrt{6} \: \: \: \: \: \: \: ...(ii)}


 \bold{ \: xy \: = \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \times \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} + \sqrt{2} } \: \: \: \: \: \: \: \: \rightarrow \: xy = 1 \: \: \: \: \: \: \: \: \: \: ...(iii) }





 \bold{ \underline{ Putting the value(s) from ( i ) , ( ii ) ( iii ) ,}}



x^2 + y^2 - 10xy


=> ( 5 + 2√6 )^2 + ( 5 - 2√6 )^2 - 10( 1 )


=> 25 + 24 + 20√6 + 25 + 24 - 20√6 - 10


=> 2( 25 + 24 ) - 10


=> 2( 25 + 24 - 5 )


=> 2( 44 )


=> 88
Answered by Anonymous
8
\text {Your answer !!}

x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\ \\  rationalising \: the \: denominator.... \\  \\  =  > x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \times   \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\  \\  =  > x =  \frac{(  { \sqrt{3}  +  \sqrt{2} )}^{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\  =  > x =  \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2} )}^{2} + 2 \times  \sqrt{3} \times  \sqrt{2}   }{3 - 2}  \\  \\  =  > x =  \frac{3 + 2 + 2 \sqrt{6} }{1}  \\  \\  =  > x =  5 + 2 \sqrt{6}  \\  \\ y =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  \\  \\  rationalising \: the \: denominator.... \\  \\  =  > y =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \\  \\  =  > y =  \frac{ {( \sqrt{3} -  \sqrt{2} ) }^{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2}) }^{2}  }  \\  \\  =  > y =  \frac{( { \sqrt{3} ) }^{2} +  {( \sqrt{2} ) }^{2} - 2 \times  \sqrt{3}  \times  \sqrt{2}   }{3 - 2}  \\  \\  =  > y =  \frac{3 + 2 - 2 \sqrt{6} }{1}  \\  \\  =  > y = 5 - 2 \sqrt{6}  \\  \\  =  > xy = 5 + 2 \sqrt{6}  \times 5 - 2 \sqrt{6}  \\  \\  =  > xy = 5(5 - 2 \sqrt{6} ) + 2 \sqrt{6} (5 - 2 \sqrt{6} ) \\  \\  =  > xy = 25 - 10 \sqrt{6}  + 10 \sqrt{6}  - 24 \\  \\  =  > xy = 25 - 24 \\  \\  =  > xy = 1 \\  \\   =  >  {x}^{2}  +  {y}^{2}  - 10xy \\  \\  =  >  {(5 + 2 \sqrt{6} )}^{2}  +  {(5 - 2 \sqrt{6} )}^{2}  - 10 \times 1 \\  \\  =  >  {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}  + 2 \times 5 \times 2 \sqrt{6}  +  {(5)}^{2}  +  {(2 \sqrt{6} )}^{2}  - 2 \times 5 \times 2 \sqrt{6}  - 10 \\  \\  =  > 25 + 24 + 20 \sqrt{6}  + 25 + 24 - 20 \sqrt{6}  - 10 \\  \\  =  > 49 + 49 - 10 \\  \\  =  > 98 - 10 \\  \\  =  > 88

\textbf {Hence, 88 is your answer !!}

\text { Thanks !! }
Similar questions