Math, asked by pallavi0276, 10 months ago

If x=(√3+√2) / (√3-√2) and y = (√3-√2) / (√3+√2), then find the value of x2 + y2
Please tell ​

Answers

Answered by Anonymous
3

\bold\red{\underline{\underline{Answer:}}}

\bold{Value \ of \ x^{2}+y^{2} \ is \frac{386}{25}}

\bold\orange{Given:}

\bold{x=\frac{(\sqrt3+\sqrt2)}{(\sqrt3-\sqrt2)}}

\bold{y=\frac{(\sqrt3-\sqrt2)}{(\sqrt3+\sqrt2)}}

\bold\pink{To \ find:}

Value of \bold{x^{2}+y^{2}}

\bold\green{\underline{\underline{Solution}}}

\bold{x=\frac{(\sqrt3+\sqrt2)}{(\sqrt3-\sqrt2)}}

Rationalising the denominator

\bold{x=\frac{(\sqrt3+\sqrt2)×(\sqrt3+\sqrt2)}{(\sqrt3-\sqrt2)×(\sqrt3+\sqrt2)}}

\bold{x=\frac{(\sqrt3+\sqrt2)^{2}}{(3^{2}-2^{2})}}

\bold{x=\frac{9+2\sqrt6+4}{9-4}}

\bold{x=\frac{13+2\sqrt6}{5}}

_______________________________

\bold{y=\frac{(\sqrt3-\sqrt2)}{(\sqrt3+\sqrt2)}}

Rationalising the denominator

\bold{y=\frac{(\sqrt3-\sqrt2)×(\sqrt3-\sqrt2)}{(\sqrt3+\sqrt2)×(\sqrt3-\sqrt2)}}

\bold{y=\frac{(\sqrt3-\sqrt2)^{2}}{(3^{2}-2^{2})}}

\bold{y=\frac{9-2\sqrt6+4}{9-4}}

\bold{y=\frac{13-2\sqrt6}{5}}

_______________________________

Now,

x+y=\bold{\frac{13+2\sqrt6}{5}+\frac{13-2\sqrt6}{5}}

x+y=\bold{\frac{26}{5}}

Squaring both the sides

\bold{(x+y)^{2}=\frac{676}{25}...(1)}

_______________________________

Now,

xy=\bold{\frac{13+2\sqrt6}{5}×\frac{13-2\sqrt6}{5}}

xy=\bold{\frac{13^{2}-2\sqrt6^{2}}{25}}

xy=\bold{\frac{169-24}{25}}

xy=\bold{\frac{145}{25}...(2)}

_______________________________

By identity

\bold{x^{2}+y^{2}=(x+y)^{2}-2(xy)}

From (1) and (2)

\bold{x^{2}+y^{2}=\frac{676}{25}-\frac{2×145}{25}}

\bold{x^{2}+y^{2}=\frac{676-290}{25}}

\bold{x^{2}+y^{2}=\frac{386}{25}}

Therefore,

\bold\purple{Value \ of \ x^{2}+y^{2} \ is \frac{386}{25}}

Similar questions