Math, asked by mumeenashali, 1 year ago

If x = √3 + √2 /√3-√2 and y = √3 - √2 /√3 + √2, then, find the value of x² + y².

Please answer fast!!

Answers

Answered by MaheswariS
24

\underline{\textbf{Given:}}

\mathsf{x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}

\mathsf{y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}

\underline{\textbf{To find:}}

\textsf{The value of}\;\mathsf{x^2+y^2}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{x+y}

\mathsf{=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}

\mathsf{=\dfrac{(\sqrt{3}+\sqrt{2})^2+(\sqrt{3}-\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}}

\textsf{Using the identities,}

\boxed{\begin{minipage}{4cm}$\\1.\;(a+b)^2=a^2+b^2+2ab\\\\2.\;(a-b)^2=a^2+b^2-2ab\\\\3.\;(a-b)(a+b)=a^2-b^2\\$\end{minipage}}

\mathsf{=\dfrac{3+2+2\sqrt{3}\sqrt{2}+3+2-2\sqrt{3}\sqrt{2}}{3-2}}

\mathsf{=\dfrac{10}{1}}

\implies\mathsf{x+y=10}

\mathsf{Now,}

\mathsf{x^2+y^2=(x+y)^2-2xy}

\mathsf{x^2+y^2=(10)^2-2{\times}\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}{\times}\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}

\mathsf{x^2+y^2=100-2}

\implies\boxed{\mathsf{x^2+y^2=98}}

Answered by indur8063
10

Answer:

98 is the answer, I hope my answer is right

Similar questions