Math, asked by User94007, 2 months ago

if x = √3+√2/√3-√2 and y = √3-√2/√3+√2 then find the values (i) x² + y² (ii) x³ + y³ please answer both with step by steps.​

Answers

Answered by chnaidu1969
2

Step-by-step explanation:

hope this helps you better

Attachments:
Answered by BlessedOne
46

Given :

  • \sf\:x~=~\frac{\sqrt{3} +\sqrt{2}}{\sqrt{3}-\sqrt{2}}

  • \sf\:y~=~\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3}+\sqrt{2}}

To find :

Value of -

  • x² + y²

  • x³ + y³

Concept :

Here in the question we are given the value of x and y. So calculating the value of ( x² + y² ) and ( x³ + y³ ) is simple, we just need to substitute the given values of x and y in the expressions. But we would first simplify the values of x and y by Rationalizing them.

In order to rationalize we need to multiply the given ratio by the conjugate of the denominator. So after rationalizing and substituting the rationalized value of x and y in the expression we would get our required answer.

Hope am clear let's solve :D~

Solution :

Rationalizing the value of x -

\sf\:x~=~\frac{\sqrt{3} +\sqrt{2}}{\sqrt{3}-\sqrt{2}}

We know conjugate of ( 3-2 ) is ( √3+√2 ) so multiplying the ratio by ( √3+√2 )

\sf\implies\:x~=~\frac{\sqrt{3} +\sqrt{2}}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3} +\sqrt{2}}{\sqrt{3}+\sqrt{2}}

\sf\implies\:x~=~\frac{(\sqrt{3} +\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}

\sf\implies\:x~=~\frac{(\sqrt{3}) ^{2} +2 \times \sqrt{3} \times \sqrt{2} +(\sqrt{2})^{2}}{3-2}

\sf\implies\:x~=~\frac{3+2\sqrt{6} +2}{1}

\sf\implies\:x~=~\frac{3+2+2\sqrt{6}}{1}

\sf\color{teal}{\implies\:x~=~5+2\sqrt{6}}

Rationalizing the value of y -

\sf\:y~=~\frac{\sqrt{3} -\sqrt{2}}{\sqrt{3}+\sqrt{2}}

We know conjugate of ( √3+√2 ) is ( √3-√2 ) so multiplying the ratio by ( √3-√2 )

\sf\implies\:y~=~\frac{\sqrt{3} -\sqrt{2}}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3} -\sqrt{2}}{\sqrt{3}-\sqrt{2}}

\sf\implies\:y~=~\frac{(\sqrt{3} -\sqrt{2})^{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}

\sf\implies\:y~=~\frac{(\sqrt{3}) ^{2} -2 \times \sqrt{3} \times \sqrt{2} +(\sqrt{2})^{2}}{3-2}

\sf\implies\:y~=~\frac{3-2\sqrt{6} +2}{1}

\sf\implies\:y~=~\frac{3+2-2\sqrt{6}}{1}

\sf\color{teal}{\implies\:y~=~5-2\sqrt{6}}

Calculating the required value for the expressions -

(i) \sf\:x^{2}+y^{2}

Substituting the simplified values of x and y

\sf\implies\:(5+2\sqrt{6})^{2}+(5-2\sqrt{6})^{2}

Using an identities :

  • ( a + b )² = a² + 2ab + b²

  • ( a - b )² = a² - 2ab + b²

\sf\implies\:[(5)^{2} +2 \times 5 \times 2\sqrt{6}+  (2\sqrt{6})^{2}]+(5-2\sqrt{6})^{2}

\sf\implies\:[25 +20\sqrt{6} + 4 \times 6]+[(5)^{2} - 2 \times 5 \times 2\sqrt{6} +(2\sqrt{6})^{2}

\sf\implies\:[25 +20\sqrt{6} + 4 \times 6]+[25 -20\sqrt{6} + 4 \times 6]

\sf\implies\:[25 +20\sqrt{6}+ 24]+[25 -20\sqrt{6}+24]

Multiplying the signs and removing the brackets

\sf\implies\:25 +20\sqrt{6}+ 24+25 -20\sqrt{6}+24

Arranging the numbers

\sf\implies\:25 +24+25+24+20\sqrt{6} -20\sqrt{6}

Proceeding simple calculation

\sf\implies\:49+25+24+20\sqrt{6} -20\sqrt{6}

\sf\implies\:74+24+20\sqrt{6} -20\sqrt{6}

\sf\implies\:98+20\sqrt{6} -20\sqrt{6}

\sf\implies\:98+\cancel{20\sqrt{6}}-\cancel{20\sqrt{6}}

\small{\underline{\boxed{\mathrm{\implies\:98}}}} \tt\color{blue}{\bigstar}

_____________________‎

(ii) \sf\:x^{3}+y^{3}

Using an identity :

  • a³ + b³ = ( a + b ) ( a² - ab + b² )

\sf\implies\:(x+y)(x^{2}-xy+y^{2})

Substituting the values

\sf\implies\:[5+2\sqrt{6}+(5-2\sqrt{6})](x^{2}-xy+y^{2})

\sf\implies\:[5+2\sqrt{6}+(5-2\sqrt{6})][(x^{2}+y^{2})-xy]

\sf\implies\:[5+2\sqrt{6}+5-2\sqrt{6}][98-xy]

\sf\implies\:[10+2\sqrt{6}-2\sqrt{6}][98-xy]

\sf\implies\:[10+\cancel{2\sqrt{6}}-\cancel{2\sqrt{6}}][98-xy]

\sf\implies\:10[98-xy]

\sf\implies\:10[98-(5+2\sqrt{6}) (5-2\sqrt{6})]

\sf\implies\:10[98-(5)^{2}-(2\sqrt{6})^{2}]

\sf\implies\:10[98-25+4\times 6]

\sf\implies\:10[98-25+24]

\sf\implies\:10[98-1]

\sf\implies\:10[97]

\sf\implies\:10 \times 97

\small{\underline{\boxed{\mathrm{\implies\:970}}}} \tt\color{blue}{\bigstar}

_____________________‎

Henceforth -

❒ x² + y² = \large{\mathfrak\purple{98}}

❒ x³ + y³ = \large{\mathfrak\purple{970}}

Note : Scroll left to right to view the answer properly. Hope it helps !~

Similar questions