Math, asked by vijay2721, 8 months ago

if x=√3+√2/√3-√2 and y=√3-√2/√3+√2 then find x^2+y^2+xy​ and explain how to multiple it

Answers

Answered by saireddy461
0

Answer:

Step-by-step explanation:

x=(\sqrt{3}+\sqrt{2})/(\sqrt{3} -\sqrt{2})\\   y=(\sqrt{3}-\sqrt{2})/(\sqrt{3}+\sqrt{2})\\x^2=((\sqrt{3}+\sqrt{2})/(\sqrt{3} -\sqrt{2}))^2\\     =((3+2+2\sqrt{6})/(3+2-2\sqrt{6})  \\    =(5+2\sqrt{6})/(5-2\sqrt{6})\\  y^2=((\sqrt{3}-\sqrt{2})/(\sqrt{3}+\sqrt{2}))^2\\       =(3+2-2\sqrt{6})/(3+2+2\sqrt{6})\\  y^2=(5-2\sqrt{6})/(5+2\sqrt{6})  \\xy={{[(\sqrt{3}+\sqrt{2})/(\sqrt{3}-\sqrt{2})]/[(\sqrt{3}-\sqrt{2})/(\sqrt{3}+\sqrt{2})]}}\\xy=1\\x^2+y^2+xy=(5+2\sqrt{6})/(5-2\sqrt{6}) + (5-2\sqrt{6})/(5+2\sqrt{6})+1\\                    = ((5+2\sqrt{6})^2+(5-2\sqrt{6})^2+(5+2\sqrt{6})(5-2\sqrt{6})) / (5+2\sqrt{6})(5-2\sqrt{6})\\                    =( 25+24+20\sqrt{6} + 25+ 24 - 20\sqrt{6}+25-24)/(25-24)\\                    =98/1\\x^2+y^2+xy=98

Similar questions