Math, asked by tusharika2866, 2 months ago

If X= √3 - √2 / √3 + √2
and y = √3 +√2 / √3 - √2

then find x² + y² + xy

Answers

Answered by smitpatil40
0

Answer:

x

2

+xy+y

2

=99

Step-by-step explanation:

Given : x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}x=

3

2

3

+

2

and y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}y=

3

+

2

3

2

We have to find x^2+xy+y^2x

2

+xy+y

2

First we calculate x^2x

2

Consider x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}x=

3

2

3

+

2

We first rationalize the denominator by multiply and divide by {\sqrt{3}+\sqrt{2}}

3

+

2

we get,

x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}x=

3

2

3

+

2

×

3

+

2

3

+

2

Simplify, we get,

\begin{gathered}x=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}\\\\ x=\frac{(\sqrt{3}+\sqrt{2})^2}{3-2}\\\\ x=(\sqrt{3}+\sqrt{2})^2\end{gathered}

x=

(

3

)

2

−(

2

)

2

(

3

+

2

)

2

x=

3−2

(

3

+

2

)

2

x=(

3

+

2

)

2

Thus, squaring both side we get,

x^2=((\sqrt{3}+\sqrt{2})^2)^2x

2

=((

3

+

2

)

2

)

2

using algebraic identity (a+b)^2=a^2+b^2+2ab(a+b)

2

=a

2

+b

2

+2ab , we have,

x^2=(3+2+2\sqrt{6})^2=(5+2\sqrt{6})^2x

2

=(3+2+2

6

)

2

=(5+2

6

)

2

Similarly, for y^2y

2

Consider y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}y=

3

+

2

3

2

We first rationalize the denominator by multiply and divide by {\sqrt{3}-\sqrt{2}}

3

2

we get,

x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}x=

3

+

2

3

2

×

3

2

3

2

Simplify, we get,

y=(\sqrt{3}-\sqrt{2})^2y=(

3

2

)

2

y^2=((\sqrt{3}-\sqrt{2})^2)^2y

2

=((

3

2

)

2

)

2

using algebraic identity (a-b)^2=a^2+b^2-2ab(a−b)

2

=a

2

+b

2

−2ab , we have,

y^2=(3+2-2\sqrt{6})^2=(5-2\sqrt{6})^2y

2

=(3+2−2

6

)

2

=(5−2

6

)

2

then x^2+xy+y^2=(5+2\sqrt{6})^2+(5+2\sqrt{6})(5-2\sqrt{6})+(5-2\sqrt{6})^2x

2

+xy+y

2

=(5+2

6

)

2

+(5+2

6

)(5−2

6

)+(5−2

6

)

2

Simplify , we get,

\begin{gathered}x^2+xy+y^2=25+24+20\sqrt{6}+25-24+25+24-20\sqrt{6}\\\\ x^2+xy+y^2=25+24+25+25\\\\ x^2+xy+y^2=99\end{gathered}

x

2

+xy+y

2

=25+24+20

6

+25−24+25+24−20

6

x

2

+xy+y

2

=25+24+25+25

x

2

+xy+y

2

=99

Thus, x^2+xy+y^2=99x

2

+xy+y

2

=99

Answered by sunayana24042006
0

Answer:

20 is the answer

the explanation is given above

hope it helps

Attachments:
Similar questions