Math, asked by muddy9022, 1 year ago

If x=√3-√2÷√3+√2 and y=√3+√2÷√3-√2, then show that x^2 + xy +y^2 = 99

Answers

Answered by sumo2
4
thank u frnds ...hope this helps
@sumo
Attachments:
Answered by sandy1816
0

x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ y =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\  \\ xy = 1 \\  \\ x + y =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  +  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ x + y =  \frac{( { \sqrt{3}  +  \sqrt{2} })^{2} + ( { \sqrt{3}  -  \sqrt{2} })^{2}  }{3 - 2}  \\  \\ x + y = 2(3 + 2) = 10 \\  \\  \\  {x}^{2}  +  {y}^{2}  + xy = ( {x + y})^{2}  - xy \\  =  {10}^{2}  - 1 \\  = 99

Similar questions