Math, asked by tarush4860, 10 months ago

If x = √3 - √2 /√3 + √2 and y = √3 + √2 / √3 - √2 , then x² + xy + y² =
A. 101
B. 99
C. 98
D. 102

Answers

Answered by nikitasingh79
2

Given : x = √3 - √2 /√3 + √2 and y = √3 + √2 / √3 - √2

To find : value of  x² + xy + y²  

 

Solution :  

We have,  x = (√3 - √2 )/(√3 + √2) and y = (√3 + √2) / (√3 - √2)

On rationalising the denominator of x :

X = (√3 - √2 ) × (√3 - √2) /(√3 + √2)  (√3 - √2)

x = (√3 - √2)² / (√3 + √2)  (√3 - √2)

By Using Identity : (a - b)²  = a² + b² - 2ab & (a + b)(a – b) = a² - b²

x = {√3² + √2² - 2 × √3 × √2}/ √3² - √2²

x = {3 + 2 - 2√6}/( 3 - 2)

x = 5 - 2√6  ...........(1)

Now ,  

x² = (5 - 2√6)²

By Using Identity : (a - b)²  = a² + b² - 2ab

x² = 5² + (2√6)² - 2 × 5 × 2√6

x² = 25 + 24 - 20√6

x² = 49 - 20√6  ............(2)

 

On rationalising the denominator of y :

y = (√3 + √2) × (√3 + √2)/ (√3 - √2) × (√3 + √2)

y = (√3 + √2)²/(√3 - √2) × (√3 + √2)

By Using Identity : (a + b)²  = a² + b² + 2ab & (a + b)(a – b) = a² - b²

y = {√3² + √2² + 2 × √3 × √2}/ √3² - √2²

y = {3 + 2 + 2√6}/( 3 - 2)

y = 5 + 2√6 ............(3)

Now ,  

y² = (5 + 2√6)²

By Using Identity : (a + b)²  = a² + b² + 2ab

y² = 5² + (2√6)² + 2 × 5 × 2√6

y² = 25 + 24 + 20√6

y² = 49 + 20√6 ............(4)

Now,  

From eq 1 & 3 :

xy = (5 - 2√6) ( 5 + 2√6)  

By Using Identity :  (a + b)(a – b) = a² - b²

xy = 5² - (2√6)²

xy = 25 – 24  

xy = 1 ............(5)

Therefore , x² + xy + y²  

From eq 2, 4 & 5 :

= 49 - 20√6 + 1 + 49 + 20√6  

= 49 + 49 + 1

= 99

x² + xy + y² = 99

Hence the value of x² + xy + y² is 99.

Among the given options option (B) 99 is correct.

 

HOPE THIS ANSWER WILL HELP YOU…..

 

Similar questions :

If =√3-1 / √3+1 = x+y√3, find the values of x and y.

https://brainly.in/question/15897365

 

If x = 2+√3, find the value of x +1/x.

https://brainly.in/question/15897367

Answered by Anonymous
0

Answer:

Step-by-step explanation:

To find : value of  x² + xy + y²  

 

Solution :  

We have,  x = (√3 - √2 )/(√3 + √2) and y = (√3 + √2) / (√3 - √2)

On rationalising the denominator of x :

X = (√3 - √2 ) × (√3 - √2) /(√3 + √2)  (√3 - √2)

x = (√3 - √2)² / (√3 + √2)  (√3 - √2)

By Using Identity : (a - b)²  = a² + b² - 2ab & (a + b)(a – b) = a² - b²

x = {√3² + √2² - 2 × √3 × √2}/ √3² - √2²

x = {3 + 2 - 2√6}/( 3 - 2)

x = 5 - 2√6  ...........(1)

Now ,  

x² = (5 - 2√6)²

By Using Identity : (a - b)²  = a² + b² - 2ab

x² = 5² + (2√6)² - 2 × 5 × 2√6

x² = 25 + 24 - 20√6

x² = 49 - 20√6  ............(2)

 

On rationalising the denominator of y :

y = (√3 + √2) × (√3 + √2)/ (√3 - √2) × (√3 + √2)

y = (√3 + √2)²/(√3 - √2) × (√3 + √2)

By Using Identity : (a + b)²  = a² + b² + 2ab & (a + b)(a – b) = a² - b²

y = {√3² + √2² + 2 × √3 × √2}/ √3² - √2²

y = {3 + 2 + 2√6}/( 3 - 2)

y = 5 + 2√6 ............(3)

Now ,  

y² = (5 + 2√6)²

By Using Identity : (a + b)²  = a² + b² + 2ab

y² = 5² + (2√6)² + 2 × 5 × 2√6

y² = 25 + 24 + 20√6

y² = 49 + 20√6 ............(4)

Now,  

From eq 1 & 3 :

xy = (5 - 2√6) ( 5 + 2√6)  

By Using Identity :  (a + b)(a – b) = a² - b²

xy = 5² - (2√6)²

xy = 25 – 24  

xy = 1 ............(5)

Therefore , x² + xy + y²  

From eq 2, 4 & 5 :

= 49 - 20√6 + 1 + 49 + 20√6  

= 49 + 49 + 1

= 99

x² + xy + y² = 99

Similar questions