Math, asked by ajeethaswani123, 1 year ago

If x= √3+√2/√3-√2 find (1) x^2 +1/x^2
(2) x^4+1/x^4

Answers

Answered by Anonymous
8

 \sf{x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} } }

rationalise the denominator

 \sf{x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  }

 \sf{x =  \frac{ {(\sqrt{3}  +  \sqrt{2})}^{2} }{ {(\sqrt{3})}^{2}   -  {(\sqrt{2} )}^{2} }}

 \sf{x =  \frac{ {{(\sqrt{3})}^{2}   +  (\sqrt{2})}^{2} + 2( \sqrt{3} )( \sqrt{2} ) }{ 3  -  {2}  }}

\sf{x =  \frac{ 5+ 2 \sqrt{6} }{ 1  }}

now

 \sf{ \frac{1}{x} =  \frac{1}{5 + 2 \sqrt{6} }  }

rationalise the denominator

\sf{ \frac{1}{x} =  \frac{1}{5 + 2 \sqrt{6} }  \times  \frac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6} }  }

\sf{ \frac{1}{x} =  \frac{5 - 2  \sqrt{6} }{ {5}^{2}   - {( 2 \sqrt{6} ) }^{2} }  }

\sf{ \frac{1}{x} =  \frac{5 - 2  \sqrt{6} }{ 25   - 24} }

\sf{ \frac{1}{x} =  {5 - 2  \sqrt{6} }}

 \sf{x +  \frac{1}{x}  = 5 + 2 \sqrt{6} + 5 - 2 \sqrt{6}  }

 \sf{x +  \frac{1}{x}  = 10}

squaring on both sides

 1) \: \sf{{(x +  \frac{1}{x})}^{2}   =  {10}^{2} }

 \sf{{{x}^{2} +  \frac{1}{{x}^{2} }}   + 2=  {100 }}

 \fbox{\sf{{{x}^{2} +  \frac{1}{{x}^{2} }}   =  {98 }}}

now again squaring on both sides

 2) \: {\sf({{{{x}^{2} +  \frac{1}{{x}^{2} }} )}^{2}  =  { {98}^{2}}}}

{\sf{{{x}^{4} +  \frac{1}{{x}^{4} }}  + 2 =  { 9604}}}

 \fbox{\sf{{{x}^{4} +  \frac{1}{{x}^{4} }}   =  { 9602}}}


einstien66: kk
einstien66: i m god only
einstien66: whats your class
einstien66: lol
einstien66: kk if you dont beleive in god is a good thing
einstien66: i m a atheist also
Anonymous: in which class r u?
Anonymous: OK got it
Answered by Anonymous
5

Answer:

Solve 1: x² + 1/x² = 98

Solve 2: (x² + 1/x²)² = 9602

Step-by-step explanation:

Refer to the attachment^^

Attachments:
Similar questions