Math, asked by snehaumade5, 4 months ago

if x=√3+√2/√3-√2
find ,
(i) x^2+1/x^2
(ii)x^4+1/x^4

Attachments:

Answers

Answered by shinchen08
2

Answer:

x+

x

1

=3−2

2

+

3−2

2

1

x

1

=

3−2

2

1

×

3+2

2

3+2

2

=

1

3+2

2

x+

x

1

=3−2

2

+3+2

2

=6

Squaring on 60th sides.

(x+

x

1

)

2

=36

x

2

+

x

2

1

=36−2⇒x

2

+

x

2

1

=34

Squaring on 60th sides.

(x

2

+

x

2

1

)

2

=(34)

2

x

4

+

x

4

1

=1156−2⇒x

4

+

x

4

1

=1154.

Answered by Anonymous
16

Question :

If \sf{x = \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}} , find :

  • \sf{x^{2} + \dfrac{1}{x^{2}}} \\ \\
  • \sf{x^{4} + \dfrac{1}{x^{4}}}

Given :

The value of x :

  • \sf{x = \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}}

To find :

The value of :-

  • \sf{x^{2} + \dfrac{1}{x^{2}} = ?} \\ \\
  • \sf{x^{4} + \dfrac{1}{x^{4}} ?}

Knowledge required :

  • \sf{(a + b)^{2} = a^{2} + b^{2} + 2ab} \\ \\

  • \sf{(a - b)^{2} = a^{2} + b^{2} - 2ab} \\ \\

  • \sf{a^{2} + b^{2} = (a + b)^{2} - 2ab} \\ \\

  • \sf{a^{2} - b^{2} = (a + b)(a - b)} \\ \\

  • \sf{\bigg(x + \dfrac{1}{x}\bigg)^{2} = x^{2} + \dfrac{1}{x^{2}} + 2} \\ \\

Solution :

First let us find the value of x (Simplified form) :

By Rationaling the value of x we get :

:\implies \sf{x = \dfrac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}} \\ \\

By multiplying (√3 + 2) in both the Numerator, we get :

:\implies \sf{x = \dfrac{(\sqrt{3} + \sqrt{2}) \times (\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2}) \times (\sqrt{3} + \sqrt{2})}} \\ \\

:\implies \sf{x = \dfrac{(\sqrt{3} + \sqrt{2})^{2}}{(\sqrt{3} - \sqrt{2}) \times (\sqrt{3} + \sqrt{2})}} \\ \\

:\implies \sf{x = \dfrac{3 + 2 \times \sqrt{3} \times \sqrt{2} + 2}{3 - 2}} \\ \\

:\implies \sf{x = 3 + 2 \times \sqrt{3} \times \sqrt{2} + 2} \\ \\

:\implies \sf{x = 5 + 2\sqrt{6}} \\ \\

:\implies \sf{x = 5 + 2\sqrt{6}} \\ \\

\boxed{\therefore \sf{x = 5 + 2\sqrt{6}}}⠀⠀⠀⠀⠀⠀⠀...Eq.(i)

Now let's find the value of 1/x.

:\implies \sf{\dfrac{1}{x} = \dfrac{1}{5 + 2\sqrt{6}}} \quad \sf{[\because x = 5 + 2\sqrt{6}]}\\ \\

By multiplying (5 - 2√6) in both the Numerator and Denominator, we get :

:\implies \sf{\dfrac{1}{x} = \dfrac{1 \times (5 - 2\sqrt{6})}{(5 + 2\sqrt{6}) \times (5 - 2\sqrt{6})}}\\ \\

:\implies \sf{\dfrac{1}{x} = \dfrac{5 - 2\sqrt{6}}{5^{2} - 2\sqrt{6}^{2}}}\\ \\

:\implies \sf{\dfrac{1}{x} = \dfrac{5 - 2\sqrt{6}}{25 - 24}}\\ \\

:\implies \sf{\dfrac{1}{x} = 5 - 2\sqrt{6}} \\ \\

\boxed{\therefore \sf{\dfrac{1}{x} = 5 - 2\sqrt{6}}} \\ \\ ⠀⠀⠀⠀⠀⠀⠀...Eq.(ii)

By adding Eq.(i) and Eq.(ii), we get :

:\implies \sf{x + \dfrac{1}{x} = 5 + 2\sqrt{6} + 5 - 2\sqrt{6}} \\ \\

:\implies \sf{x + \dfrac{1}{x} = 5 + 5} \\ \\

:\implies \sf{x + \dfrac{1}{x} = 10} \\ \\

\boxed{\therefore \sf{x + \dfrac{1}{x} = 10}}⠀⠀⠀⠀⠀⠀⠀...Eq.(iii)

By squaring Eq.(iii), we get :

:\implies \sf{\bigg(x + \dfrac{1}{x}\bigg)^{2} = 10^{2}} \\ \\

:\implies \sf{x^{2} + \dfrac{1}{x^{2}} + 2= 100} \\ \\

:\implies \sf{x^{2} + \dfrac{1}{x^{2}} = 100 - 2} \\ \\

:\implies \sf{x^{2} + \dfrac{1}{x^{2}} = 98} \\ \\

\boxed{\therefore \sf{x^{2} + \dfrac{1}{x^{2}} = 98}}⠀⠀⠀⠀⠀⠀⠀...Eq.(iv)

By squaring Eq.(iv), we get :

:\implies \sf{\bigg(x^{2} + \dfrac{1}{x^{2}}\bigg)^{2} = 98^{2}} \\ \\

:\implies \sf{x^{4} + \dfrac{1}{x^{4}} + 2 = 9604} \\ \\

:\implies \sf{x^{4} + \dfrac{1}{x^{4}} = 9604 - 2} \\ \\

:\implies \sf{x^{4} + \dfrac{1}{x^{4}} = 9602} \\ \\

\boxed{\therefore \sf{x^{4} + \dfrac{1}{x^{4}} = 9602}}

Similar questions