Math, asked by anushka7680, 2 months ago

if x =√3+√2/√3-√2 , find x`4+1/x`4​

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x = \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} }

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\rm :\longmapsto\: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy

\rm :\longmapsto\: {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy

\rm :\longmapsto\:  {(x + y)}^{2}  + {(x  -  y)}^{2} =2({x}^{2} +  {y}^{2})

\rm :\longmapsto\:(x + y)(x - y) =  {x}^{2} -  {y}^{2}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }

On rationalizing the denominator, we get

\rm  \:  = \:  \:  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \times \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }

\rm \:  =  \:  \: \dfrac{ {( \sqrt{3} +  \sqrt{2}) }^{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }

\rm \:  =  \:  \: \dfrac{3 + 2 + 2 \sqrt{6} }{3 - 2}

\rm \:  =  \:  \: 5 + 2 \sqrt{6}

\bf\implies \:x  =  \:  \: 5 + 2 \sqrt{6}

Now,

Consider,

\rm :\longmapsto\:\dfrac{1}{x}

\rm \:  =  \:  \: \dfrac{1}{5 + 2 \sqrt{6} }

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{5 + 2 \sqrt{6} }  \times \dfrac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6} }

\rm \:  =  \:  \: \dfrac{5 - 2 \sqrt{6} }{ {(5)}^{2}  -  {(2 \sqrt{6}) }^{2} }

\rm \:  =  \:  \: \dfrac{5 - 2 \sqrt{6} }{ 25 - 24}

\rm \:  =  \:  \: 5 - 2 \sqrt{6}

\bf\implies \:\dfrac{1}{x}   =  \:  \: 5 - 2 \sqrt{6}

Therefore,

\bf\implies \:x + \dfrac{1}{x}   =  \:5 + 2 \sqrt{6}   +  \: 5 - 2 \sqrt{6}  = 10

Hence,

\bf\implies \:x + \dfrac{1}{x}  = 10

On squaring both sides, we get

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{x} \bigg) }^{2}  =  {(10)}^{2}

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } + 2 \times x \times \dfrac{1}{x}  = 100

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } + 2 = 100

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } = 100 - 2

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} } = 98

Again, On squaring both sides, we get

\rm :\longmapsto\: {\bigg( {x}^{2}  + \dfrac{1}{ {x}^{2} } \bigg) }^{2}  =  {(98)}^{2}

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} } + 2  \times  {x}^{2} \times \dfrac{1}{ {x}^{2} }  = 9604

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} } + 2   = 9604

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} }   = 9604 - 2

\rm :\longmapsto\: {x}^{4} + \dfrac{1}{ {x}^{4} }   = 9602

Additional Information:-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions