Math, asked by rkindia5016, 9 months ago

if x = √3+√2/√3−√2 , find x²+1/x

Attachments:

Answers

Answered by Sharad001
17

Question :-

 \sf if \:  \: x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \:, \: find \: \:  \:  (1)  \:  {x}^{2}  +  \frac{1}{ {x}^{2} } \:   \\  \sf   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    (2) {x}^{4}  +  \frac{1}{ {x}^{4} }

Answer :-

(1) \: \to \boxed{  \sf{x}^{2}  +  \frac{1}{ {x}^{2} }  = 98 \:  \:  \: }  \:    \\ (2)\to  \boxed{\sf {x}^{4}  +  \frac{1}{ {x}^{4} }  = 9602} \:

Solution :-

We have ;

 \to \sf x \:  =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \\  \\ \sf rationalise \: by \:  \sqrt{3}  +  \sqrt{2}  \\  \\   \to \sf x = \bigg( \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  } \bigg) \times  \bigg(\frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +   \sqrt{2}  } \bigg) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \frac{{( \sqrt{3}   + \sqrt{2}) }^{2} }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2} )}^{2} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \:  \frac{3 + 2 + 2 \sqrt{6} }{1}  \\  \\  \to  \boxed{\sf x \:  = 5 + 2 \sqrt{6} }

Now ,

 \to \sf {x}^{2}  =  {(5 + 2 \sqrt{6}) }^{2}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 25 +  {(2 \sqrt{6}) }^{2}  + 20 \sqrt{6}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 25 \:  + 24 + 20 \sqrt{6}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   = 49 + 20 \sqrt{6}

Hence ,

 \implies \sf  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  \implies \sf (49 + 20 \sqrt{6} ) +  \frac{1}{(49 + 20 \sqrt{6} )}  \\  \\  \implies \: 49 + 20 \sqrt{6}  +  \frac{(49  -  20 \sqrt{6}) }{ {(49)}^{2}  -  {(20 \sqrt{6} )}^{2} }  \\  \\  \implies \: 49 + 20 \sqrt{6}  +  \frac{(49 - 20 \sqrt{6}) }{2401 - 2400}  \\  \\  \implies \: 49 + 20 \sqrt{6}  + 49 - 20 \sqrt{6}  \\  \\  \implies \: 98 \\  \\  \to \boxed{ \sf{x}^{2}  +  \frac{1}{ {x}^{2} }  = 98}

Now ,

 \to \sf  { \bigg( {x}^{2} +  \frac{1}{ {x}^{2} } \bigg)  }^{2}  =  {x}^{4} +  \frac{1}{ {x}^{4} }   + 2 \\  \\  \to \sf {(98)}^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \\  \\  \to \sf {x}^{4}  +  \frac{1}{ {x}^{4} }  = 9604 - 2 \\  \\  \to  \boxed{\sf {x}^{4}  +  \frac{1}{ {x}^{4} }  = 9602}

Similar questions