Math, asked by laxminegi08047, 10 months ago

If x=√3-√2/√3+√2and y=√3+√2/√3-√2 find the value of x2+y2+xy​

Answers

Answered by RvChaudharY50
121

Gɪᴠᴇɴ :-

\bf\:x=\dfrac{\sqrt{3}-\sqrt{2}}{ \sqrt{3}+\sqrt{2} }

\bf\:y=\dfrac{\sqrt{3} + \sqrt{2}}{ \sqrt{3} - \sqrt{2} }

Tᴏ Fɪɴᴅ :-

  • x² + y² + xy = ?

Sᴏʟᴜᴛɪᴏɴ :-

Rationalizing x & y we get :-

\purple\longmapsto\tt\:x=\dfrac{\sqrt{3}-\sqrt{2}}{ \sqrt{3}+\sqrt{2}} \times \: \dfrac{\sqrt{3}-\sqrt{2}}{ \sqrt{3} - \sqrt{2}} \\  \\ \purple\longmapsto\tt\:x= \dfrac{(\sqrt{3}-\sqrt{2})^{2}}{( \sqrt{3})^{2} - (\sqrt{2})^{2}} \\  \\\purple\longmapsto\tt\:x= \dfrac{3 + 2 - 2\sqrt{6}}{3 - 2} \\  \\\purple\longmapsto\boxed{\tt\:x=5 - 2 \sqrt{6}}

Similarly,

\purple\longmapsto\tt\:y=\dfrac{\sqrt{3} + \sqrt{2}}{ \sqrt{3} - \sqrt{2}} \times \: \dfrac{\sqrt{3} +\sqrt{2}}{ \sqrt{3}+ \sqrt{2}} \\  \\ \purple\longmapsto\tt\:y= \dfrac{(\sqrt{3} + \sqrt{2})^{2}}{( \sqrt{3})^{2} - (\sqrt{2})^{2}} \\  \\\purple\longmapsto\tt\:y= \dfrac{3 + 2  +2\sqrt{6}}{3 - 2} \\  \\\purple\longmapsto\boxed{\tt\:y=5+2 \sqrt{6}}

And,

\purple\longmapsto\tt\:x \times y=\dfrac{\sqrt{3} -\sqrt{2}}{ \sqrt{3}+\sqrt{2}} \times \: \dfrac{\sqrt{3} + \sqrt{2}}{ \sqrt{3} - \sqrt{2}} \\  \\ \purple\longmapsto\boxed{\tt\:xy=1}

Putting All Values Now, we get :-

\red\longrightarrow\bf\:{x}^{2}+{y}^{2} + xy \\  \\\red\longrightarrow\bf\:(x + y)^{2} - xy \\ \\ \red\longrightarrow\bf\:(5 - 2 \sqrt{6} + 5 + 2 \sqrt{6})^{2} - 1 \\  \\\red\longrightarrow\bf\:(10)^{2} - 1 \\  \\\red\longrightarrow\bf\:100 - 1 \\  \\\red\longrightarrow\red{\large\boxed{\bf\:99}}

\rule{200}{4}

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\huge\bold{\red{\ddot{\smile}}}}}}}}}}}}}


Anonymous: Excellent !
RvChaudharY50: Thanks Bro. ❤️
MOSFET01: Nice
RvChaudharY50: Thanks .
Answered by AdorableMe
87

\dag\ \large\underline{\mathbb{GIVEN :-}}

\bullet\  \sf{x=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}

\bullet\ \sf{y=\dfrac{\sqrt{3}+\sqrt{2}  }{\sqrt{3}-\sqrt{2}  } }

\dag\ \large\underline{\mathbb{TO\ FIND :-}}

\sf{x^2+y^2+xy}

\dag\ \large\underline{\mathbb{CONCEPT\ USED :-}}

\sf{x\ and\ y\ are\ rationalised\ to\ remove\ the\ roots}\\\sf{from\ the\ denominator.}

\dag\ \large\underline{\mathbb{SOLUTION :-}}

\underline{\sf{Rationalising\ x }}

\sf{x=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}\\\\\\\sf{\implies x=\dfrac{(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2}  )}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2}  )   } }\\\\\\\sf{\implies x=\dfrac{(\sqrt{3}-\sqrt{2}  )^2}{(\sqrt{3} )^2-(\sqrt{2} )^2} }\\\\\\\sf{\implies x=\dfrac{(\sqrt{3} )^2+(\sqrt{2} )^2-2\times \sqrt{3}\times \sqrt{2}  }{3-2} }\\\\\\\sf{\implies x=3+2-2\sqrt{6} }\\\\\boxed{\sf{\implies x=5-2\sqrt{6} }}

\rule{200}2

\underline{\sf{Rationalising\ y }}

\sf{y=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}\\\\\\\sf{\implies y=\dfrac{(\sqrt{3}+\sqrt{2})(\sqrt{3}+\sqrt{2}  )}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2}  )   } }\\\\\\\sf{\implies y=\dfrac{(\sqrt{3}+\sqrt{2}  )^2}{(\sqrt{3} )^2-(\sqrt{2} )^2} }\\\\\\\sf{\implies y=\dfrac{(\sqrt{3} )^2+(\sqrt{2} )^2+2\times \sqrt{3}\times \sqrt{2}  }{3-2} }\\\\\\\sf{\implies y=3+2+2\sqrt{6} }\\\\\boxed{\sf{\implies y=5+2\sqrt{6} }}

\rule{200}2

\sf{x^2=(5-2\sqrt{6})^2 }\\\\\sf{\implies x^2=(5)^2+(2\sqrt{6})^2-2\times5\times2\sqrt{6}}\\\\\sf{\implies x^2=25+24-20\sqrt{6} }\\\\\sf{\implies x^2=49-20\sqrt{6} }

\rule{150}{1.5}

\sf{y^2=(5+2\sqrt{6})^2 }\\\\\sf{\implies y^2=(5)^2+(2\sqrt{6})^2+2\times5\times2\sqrt{6}}\\\\\sf{\implies x^2=25+24+20\sqrt{6} }\\\\\sf{\implies y^2=49+20\sqrt{6} }

\rule{150}{1.5}

\sf{xy=(5-2\sqrt{6})(5+2\sqrt{6})  }\\\\\sf{\implies xy=(5)^2-(2\sqrt{6} )^2}\\\\\sf{\implies xy=25-24}\\\\\sf{\implies xy=1}

\underline{\sf{Now\ putting\ all\ the\ values:-}}

\sf{x^2+y^2+xy=49-20\sqrt{6}+49+20\sqrt{6}+1}\\\\\sf{\longrightarrow x^2+y^2+xy=49+49+1}\\\\\boxed{\sf{\longrightarrow x^2+y^2+xy=99}}\:\:\:\:\:\: \mathbf{\cdots ANSWER}

Similar questions