Math, asked by Necromancer16, 2 months ago

If x= 3+2√3 find the value of x²+1/x² and x⁴+1/x⁴​

Answers

Answered by IntrovertLeo
4

Given:

The value of x -

  • \bf x = 3+2\sqrt{3}

What To Find:

We have to find the value of -

  • \bf x^2  + \dfrac{1}{x^2}
  • \bf x^4 + \dfrac{1}{x^4}

Solution:

  • Finding the value of -

\sf \to \dfrac{1}{x}

We know that 1/x is the conjugate of x. That is if -

\sf \to x = 3+2\sqrt{3}

Then,

\sf \to \dfrac{1}{x} = 3-2\sqrt{3}

  • Finding the value of -

\sf \to x + \dfrac{1}{x}

Substitute the values,

\sf \to (3+2\sqrt{3}) + (3-2\sqrt{3})

Remove the brackets,

\sf \to 3+2\sqrt{3} + 3-2\sqrt{3}

Rearrange the terms,

\sf \to 3 + 3-2\sqrt{3}+2\sqrt{3}

Solve the terms,

\sf \to  6

  • Finding the value of -

\sf \to x^2  + \dfrac{1}{x^2}

Can be written as,

\sf \to \bigg(x  + \dfrac{1}{x} \bigg)^2

Write the value of sum in RHS,

\sf \to \bigg(x  + \dfrac{1}{x} \bigg)^2 = 6^2

Use the identity (a + b)² = a² + b² + 2ab,

\sf \to x^2 + \dfrac{1}{x^2} + 2 \bigg(x \times \dfrac{1}{x} \bigg) = 6^2

Solve the brackets,

\sf \to x^2 + \dfrac{1}{x^2} + 2 = 6^2

Take 2 to RHS,

\sf \to x^2 + \dfrac{1}{x^2} = 6^2 - 2

Find the square of 6,

\sf \to x^2 + \dfrac{1}{x^2} = 36 - 2

Subtract 2 from 36,

\sf \to x^2 + \dfrac{1}{x^2} = 34

  • Finding the value of -

\sf \to x^4 + \dfrac{1}{x^4}

Can be written as,

\sf \to \bigg( x^2 + \dfrac{1}{x^2} \bigg)^2

Also written as,

\sf \to \bigg( x^2 + \dfrac{1}{x^2} \bigg)^2 = 34^2

Using the identity (a + b)² = a² + b² + 2ab,

\sf \to x^4 + \dfrac{1}{x^4} + 2\bigg(x \times \dfrac{1}{x} \bigg) = 34^2

Solve the brackets,

\sf \to x^4 + \dfrac{1}{x^4} + 2= 34^2

Take 2 to RHS,

\sf \to x^4 + \dfrac{1}{x^4}= 34^2 - 2

Find the square of 34,

\sf \to x^4 + \dfrac{1}{x^4}= 1156 - 2

Subtract 2 from 1156,

\sf \to x^4 + \dfrac{1}{x^4}= 1154

Final Answer:

∴ Thus, the value of -

  • \bf x^2 + \dfrac{1}{x^2} \: is \: 34
  • \bf x^4 + \dfrac{1}{x^4} \: is \: 1154
Similar questions