Math, asked by solver63, 2 months ago

if x= √3/2 find √1+x - √1-x
please send fast

Answers

Answered by MrImpeccable
14

ANSWER:

Given:

  • x = √3/2

To Find:

  • Value of √(1+x) - √(1-x)

Solution:

We need to find that,

\implies \sqrt{1+x}-\sqrt{1-x}

Now, we will first take square of the above expression, and then at last, we will take square root.

So on squaring the expression,

\implies(\sqrt{1+x}-\sqrt{1-x})^2

We know that,

\hookrightarrow (a-b)^2=a^2+b^2-2ab

So,

\implies(\sqrt{1+x}-\sqrt{1-x})^2

\implies(\sqrt{1+x})^2+(\sqrt{1-x})^2-2(\sqrt{1+x})(\sqrt{1-x})

\implies(1+x)+(1-x)-2(\sqrt{(1+x)(1-x)})

We know that,

\hookrightarrow (a-b)(a+b)=a^2-b^2

So,

\implies 1+x\!\!\!/+1-x\!\!\!/-2(\sqrt{1^2-x^2})

\implies1+1-2(\sqrt{1-x^2})

Substituting the value of x,

\implies2-2\left(\sqrt{1-\left(\dfrac{\sqrt3}{2}\right)^2}\right)

So,

\implies2-2\left(\sqrt{1-\dfrac{3}{4}}\right)

Taking LCM,

\implies2-2\left(\sqrt{\dfrac{4-3}{4}}\right)

\implies2-2\left(\sqrt{\dfrac{1}{4}}\right)

So,

\implies2-2\!\!\!/\left(\dfrac{1}{2\!\!\!/}\right)

Hence,

\implies2-1

\implies1

Now, we will take square root of the above result,

\implies\sqrt{1}

Hence,

\bf\implies\pm1

Therefore,

\implies\bf{\sqrt{1+x}-\sqrt{1-x} = \pm1}\:\:\:(for\:x=\frac{\sqrt3}{2})

Similar questions