if x=√3+√2 , find the value of x+1/x+x^3+1/x^3
Answers
Answered by
4
Answer :
x + 1/x + x³ + 1/x³ = 20√3
Solution :
- Given : x = √3 + √2
- To find : x + 1/x + x³ + 1/x³
We have ,
x = √3 + √2
Thus ,
1/x = 1/(√3 + √2)
Now ,
Rationalising the denominator of the term in RHS , we have ;
=> 1/x = (√3 - √2)/(√3 + √2)(√3 - √2)
=> 1/x = (√3 - √2)/[(√3)² - (√2)²]
=> 1/x = (√3 - √2)/(3 - 2)
=> 1/x = (√3 - √2)/1
=> 1/x = √3 - √2
Now ,
=> x + 1/x = (√3 + √2) + (√3 - √2)
=> x + 1/x = 2√3
Now ,
Cubing both the sides , we get ;
=> (x + 1/x)³ = (2√3)³
=> x³ + (1/x)³ + 3•x•(1/x)•(x + 1/x) = 24√3
=> x³ + 1/x³ + 3•1•2√3 = 24√3
=> x³ + 1/x³ + 6√3 = 24√3
=> x³ + 1/x³ = 24√3 - 6√3
=> x³ + 1/x³ = 18√3
Now ,
=> x + 1/x + x³ + 1/x³ = 2√3 + 18√3
=> x + 1/x + x³ + 1/x³ = 20√3
Hence ,
x + 1/x + x³ + 1/x³ = 20√3
Similar questions
Math,
2 months ago
English,
2 months ago
Math,
2 months ago
Math,
4 months ago
Math,
4 months ago
India Languages,
10 months ago
India Languages,
10 months ago
Math,
10 months ago