Math, asked by akvalsala23, 10 months ago

If x=√3-√2 ,find the value of : x^3+1/x cube Please help me as soon as possible

Answers

Answered by sh1979
0

Answer:

\sqrt27-\sqrt8+7/\sqrt3-\sqrt2

Step-by-step explanation:

x=\sqrt{3}-\sqrt{2}\\

x^3+1/x

(\sqrt{3}-\sqrt{2})^3+1/\sqrt{3}-\sqrt{2}

\sqrt27-\sqrt8-3*\sqrt3*\sqrt2(\sqrt3-\sqrt2)+1/\sqrt3-\sqrt2

\sqrt27-\sqrt8-3\sqrt6(\sqrt3-\sqrt2)+1/\sqrt3-\sqrt2

\sqrt27-\sqrt8-3\sqrt18+3\sqrt2+1/\sqrt3-\sqrt2

\sqrt27-\sqrt8+(\sqrt18*\sqrt2)+1/\sqrt3-\sqrt2

\sqrt27-\sqrt8+\sqrt36+1/\sqrt3-\sqrt2

\sqrt27-\sqrt8+6+1/\sqrt3-\sqrt2

\sqrt27-\sqrt8+7/\sqrt3-\sqrt2

plzz mark me as brainliest

Similar questions