Math, asked by Vansh7776, 1 year ago

if x=3+2 root 2,find the value of[root x-1 / rooot x]

Answers

Answered by DaIncredible
1
Hey friend,
Here is the answer you were looking for:
x = 3 + 2 \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\ using \: the \: identity \\ (a  + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{ {(3)}^{2}  -  {(2 \sqrt{2}) }^{2} }  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{x}  = 3 - 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = (3 + 2 \sqrt{2} ) + (3 - 2 \sqrt{2} ) \\  \\ x +  \frac{1}{x}  = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 3 + 3 \\  \\ x +  \frac{1}{x}  = 6


Hope this helps!!!

@Mahak24

Thanks...
☺☺
Answered by Anonymous
0

Answer:The cubed root of nine thousand, one hundred and ninety-seven ∛9197 = 20.95

Step-by-step explanation:

Similar questions