Math, asked by vetronitro, 10 months ago

if x=3 + 2 root 2 find the value of root x minus one by root x do it in step by step process​

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\sqrt{x}+\frac{1}{\sqrt{x}}=2\sqrt{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies x =  3 + 2 \sqrt{2} \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  \sqrt{x}  +  \frac{1}{ \sqrt{x} }  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt\circ \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\  \tt:  \implies  ( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}  =  {( \sqrt{x}) }^{2}  + ( \frac{1}{ \sqrt{x} } )^{2}  + 2 \times  \sqrt{x}  \times  \frac{1}{ \sqrt{x} }  \\  \\ \tt:  \implies  ( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}  =x +  \frac{1}{x}  + 2 \\  \\ \tt:  \implies  ( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}  =3 + 2 \sqrt{2}  +  \frac{1}{3 + 2 \sqrt{2} }  + 2 \\  \\ \tt:  \implies  ( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}  =3 + 2 \sqrt{2}  +  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  + 2 \\  \\ \tt:  \implies  ( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}  =3 + 2 \sqrt{2}  +  \frac{3 - 2 \sqrt{2} }{ {3}^{2}  - (2 \sqrt{2})^{2} }  + 2 \\  \\ \tt:  \implies  ( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}  =3 + 2 \sqrt{2}  +  \frac{3 - 2 \sqrt{2} }{9 - 8}  + 2 \\  \\ \tt:  \implies  ( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}  =3 + 2 \sqrt{2} + 3 - 2 \sqrt{2}   + 2 \\  \\ \tt:  \implies  ( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}  =6 + 2 \\  \\  \tt:  \implies  ( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}  =8\\\\ \green{\tt:\implies \sqrt{x}+\frac{1}{\sqrt{x}}=2\sqrt{2}}

Answered by Saby123
14

 \tt{\red{\huge{Solution _{BQ} \:: - }}}

 \begin{lgathered} \tt: \leadsto ( \sqrt{x} + \dfrac{1}{ \sqrt{x} } )^{2} = {( \sqrt{x}) }^{2} + ( \dfrac{1}{ \sqrt{x} } )^{2} + 2 \times \sqrt{x} \times \dfrac{1}{ \sqrt{x} } \\ \\ \tt: \mapsto ( \sqrt{x} + \dfrac{1}{ \sqrt{x} } )^{2} =x + \dfrac{1}{x} + 2 \\ \\ \tt: \leadsto ( \sqrt{x} + \dfrac{1}{ \sqrt{x} } )^{2} =3 + 2 \sqrt{2} + \frac{1}{3 + 2 \sqrt{2} } + 2 \\ \\ \tt: \implies ( \sqrt{x} + \frac{1}{ \sqrt{x} } )^{2} =3 + 2 \sqrt{2} + \frac{1}{3 + 2 \sqrt{2} } \times \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} } + 2 \\ \\ \tt: \implies ( \sqrt{x} + \frac{1}{ \sqrt{x} } )^{2} =3 + 2 \sqrt{2} + \frac{3 - 2 \sqrt{2} }{ {3}^{2} - (2 \sqrt{2})^{2} } + 2 \\ \\ \tt: \implies ( \sqrt{x} + \frac{1}{ \sqrt{x} } )^{2} =3 + 2 \sqrt{2} + \frac{3 - 2 \sqrt{2} }{9 - 8} + 2 \\ \\ \tt: \implies ( \sqrt{x} + \frac{1}{ \sqrt{x} } )^{2} =3 + 2 \sqrt{2} + 3 - 2 \sqrt{2} + 2 \\ \\ \tt: \implies ( \sqrt{x} + \frac{1}{ \sqrt{x} } )^{2} =6 + 2 \\ \\ \tt: \implies ( \sqrt{x} + \frac{1}{ \sqrt{x} } )^{2} =8\\\\ \purple{\tt:\leadsto \sqrt{x}+\frac{1}{\sqrt{x}}=2\sqrt{2}}......(A)\end{lgathered}

Similar questions