Math, asked by anurag510, 1 year ago

If X= 3+2 root 3 then what is the value of X-1/X​

Answers

Answered by LovelyG
3

Answer:

x = 3 + 2 \sqrt{3}  \\  \\  \frac{1}{x}  = \frac{1}{3 + 2 \sqrt{3} }  \times  \frac{3 - 2 \sqrt{3} }{3 - 2 \sqrt{3} }  \\  \\  \frac{1}{x} =  \frac{3 - 2 \sqrt{3} }{(3) {}^{2}  - (2 \sqrt{3}) {}^{2}  }  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{3} }{9 - 12}  \\  \\  \frac{1}{x}  = \frac{-3 +2 \sqrt{2}} {2}

Now,

 = x -  \frac{1}{x}  \\  \\  = 3  +  2 \sqrt{3}   - \frac{-3 +2 \sqrt{2}} {2} \\  \\  = \frac{2(3+2 \sqrt {3}) + 3 - 2\sqrt {3}}{2} \\  \\  = \frac{6+4 \sqrt{3} + 3 - 2 \sqrt {3}} {2} \\ \\ = \frac{9 + 2 \sqrt {3}} {2}

_______________________


anurag510: sorry but my question is 3+2 root 3 not 3+2 root 2
LovelyG: OK, I'll correct! wait
anurag510: sure
LovelyG: Edited ✌️
Answered by priyabachala
0

given,

x = 3+2√3

x-1/x

= (x²-1)/x

= [(3+2√3)²-1]/3+2√3

= [9+12+12√3-1]/3+2√3

= (20+12√3)/3+2√3

on rationalizing denominator with 3-2√3

= [(20+12√3)(3-2√3)]/(-4)

= (60-40√3+36√3-72)/(-4)

= (-12-4√3)/(-4)

= 3+√3

Similar questions