if x=3+2 root2 find [x-1/x]whole cube
Answers
Given -
x = 3 + 2√2.
To find -
Find the value of ( x - 1 / x )³.
Solution -
x = 3 + 2√2 .
( 1 / x )
=> [ 1 / 3 + 2√2 ]
=> [ 1 / 3 + 2√2 ] × [ 3 - 2√2 / 3 - 2√2 ]
=> [ 3 - 2√2 ] / [ ( 3 + 2√2 ) × ( 3 - 2√2 ) ]
=> [ 3 - 2√2 ] / [ 9 - 8 ]
=> 3 - 2√2 .
Thus ,
( 1 / x ) = 3 - 2√2
[ x - 1 / x ]
=> [ 3 + 2√2 ] - [ 3 - 2√2 ]
=> 3 + 2√2 - 3 + 2√2
=> 4√2 .
[ x - 1 / x ]³
=> { 4 √ 2 }³
=> 64 × 2√2
=> 128√2 .
This is the required answer .
_________________________________
Additional Information -
( a + b )² = a² + 2ab + b²
( a - b )² = a² - 2ab + b²
( a + b )( a - b ) = a² - b²
( a + b )³ = a³ + 3ab ( a + b ) + b³
( a - b )³ = a³ - 3ab ( a + b ) - b³
( a + b + c )³ = a³ + b³ + c³ + 3 ( a + b )( b + c )( c + a )
a³ + b³ + c³ - 3abc = ( a + b + c )( a² + b² + c² - ab - bc - ca )
When a + b + c = 0 ,
a³ + b³ + c³ = 3abc .
_________________________________