Math, asked by manvi4197, 1 year ago

if x = √3-√2 then find the value of ( x-1/x )^2 .................tell me the answer pls ​

Answers

Answered by LovelyG
13

Answer:

\underline{\underline{\large{\sf Given\:that:}}}

x = √3 - √2

 \sf \implies  \frac{1}{x}  =  \frac{1}{ \sqrt{3} -  \sqrt{2}  }  \\  \\ \sf \implies  \frac{1}{x}  =  \frac{1}{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ \sf \implies  \frac{1}{x}  =  \frac{ \sqrt{3} +  \sqrt{2}  }{( \sqrt{3}) {}^{2} - ( \sqrt{2}) {}^{2}  }  \\  \\ \sf \implies  \frac{1}{x}  =  \frac{ \sqrt{3}  +  \sqrt{2} }{3 - 2}  \\  \\ \sf \implies  \frac{1}{x}  =  \sqrt{3}  +  \sqrt{2}

Now,

 \sf x -  \frac{1}{x}  =  \sqrt{3}  -  \sqrt{2}  - ( \sqrt{3}  +  \sqrt{2} ) \\ \\ \sf \implies  \sqrt{3}  -  \sqrt{2}  -  \sqrt{3}  -  \sqrt{2}  \\  \\ \sf \implies  - 2 \sqrt{2}

We have got-

\sf x -  \frac{1}{x}  =  - 2 \sqrt{2}  \\  \\  \underline{\underline{ \sf Squaring \: both \: sides - }} \\  \\ \sf (x -  \frac{1}{x} ) {}^{2}  = ( - 2 \sqrt{2} ) {}^{2}  \\  \\  \boxed{ \red{\bf (x -  \frac{1}{x} ) {}^{2}  =8}}

Hence, the answer is 8.


tavilefty666: well
Answered by tavilefty666
2

Lets first, do operation on the equation so that it will be easy to do the sum.

We will use the identity

</p><p>(a-b)^2=a^2+b^2-2ab\\</p><p>

Now we'll put the value of x in the equation.

After that, we will rationalise the denominator by multiplying the numerator and denominator by

</p><p>5+2\sqrt{6}\\</p><p>

You'll get the answer as

</p><p>6+2\sqrt{6}-2\sqrt{3}-2\sqrt{2}</p><p>

Attachments:
Similar questions