Math, asked by aksh69823, 10 months ago

if x= √3-√2 then find the value of x cube +1/x cube​

Answers

Answered by Delta13
1

Given:

x =  \sqrt{3}  -  \sqrt{2}

To find:

 {x}^{3}  + ( \frac{1}{x } ) {}^{3} =?

Solution:

x =  \sqrt{3}  -  \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{3}  -  \sqrt{2} }  \\  \\ rationalising \: the \: denominator

 \frac{1}{x}  =  \frac{1}{ \sqrt{3}  -  \sqrt{2}  } \frac{ \times  (\sqrt{3 } +  \sqrt{2}  )}{ \times ( \sqrt{3} +  \sqrt{2} ) }

 =  \frac{ \sqrt{3}  +  \sqrt{2} }{( \sqrt{3}) {}^{2} - ( \sqrt{2} ) {}^{2}   }  \\  \\  =  \frac{ \sqrt{3}  +  \sqrt{2} }{3 - 2}

 =    \sqrt{3}  +  \sqrt{2}

Now,

x +  \frac{1}{x}  =  \sqrt{3}  -  \sqrt[]{2}  +  \sqrt{3}  +  \sqrt{2}  \\  \\  = 2 \sqrt{3}

We know that,

[ (a+b)³= a³ + b³ + 3ab (a+b) ]

Using this identity

we get

a³ + b³ = (a+b)³ - (3ab (a+b) )

 {x}^{3}  + ( \frac{1}{x} ) {}^{3}  = (x +  \frac{1}{x} ) {}^{3}  - (3 \times x \times  \frac{1}{x} )(x +  \frac{1}{x} )

Substituting values

 \\= (2 \sqrt{3})  {}^{3}  - 3(2 \sqrt{3} )

 = 24 \sqrt{3}  - 6 \sqrt{3}   \\  = 18 \sqrt{3}

Hence, the value is 18√3.

If it helps you then Mark as brainliest.

Similar questions