Math, asked by bshsuhhd, 1 year ago

if x=√3 +√2 then find value of x^4+1/x^4​

Answers

Answered by praneethks
1

Answer :

x +1/x = √3+√2 +1/(√3+√2) = √3+√2 +

(√3-√2)/(√3+√2)*(√3-√2) =√3+√2 +(√3-√2)/(3-2) = 2√3

On squaring on both sides, we get

 {(x +  \frac{1}{x} )}^{2}  = 12 =  >

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 12 =  >

 {x}^{2}  +   \frac{1}{ {x}^{2} }  = 10

Now square the above equation on both sides, we get

 {( {x}^{2}  +  \frac{1}{ {x}^{2}  })}^{2}  = 100 \:  =  >

 {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 100 =  >

  {x}^{4} +  \frac{1}{ {x}^{4} }   + 2 = 100 =  >  {x}^{4} +  \frac{1}{ {x}^{4}} = 98

HOPE IT HELPS YOU. MARK ME AS BRAINLIEST .

Similar questions