Math, asked by pinky2442, 1 year ago

if x = √3+√2 then find x+1/x​

Answers

Answered by Anonymous
5

Answer :-

→ 2√3 .

Step-by-step explanation :-

We have ,

x = √3 + √2 .

Then,

 \sf \rightarrow \frac{1}{x}  =  \frac{1}{ \sqrt{3}  +  \sqrt{2} } . \\  \\ \sf  =  \frac{1}{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} } . \\  \\   \sf=  \frac{ \sqrt{3} -  \sqrt{2}  }{ {( \sqrt{3}) }^{2} -  {( \sqrt{2}) }^{2}  } . \\  \\  =  \frac{ \sqrt{3} -  \sqrt{2}  }{3 - 2} . \\  \\  \it \therefore \frac{1}{x}  =  \sqrt{3}  -  \sqrt{2} .

Now,

x + 1/x .

= √3 + √2 + √3 - √2 .

= 2√3 .

Hence , it is solved .

Answered by Anonymous
5

 \large\sf{given \: x =  \sqrt{3}  +  \sqrt{2} }

 \large\sf{ \frac{1}{x}  =  \frac{1}{ \sqrt{3}  +  \sqrt{2} } }

 \large\sf{rationalise \: the \: denominator}

 \large\implies \sf{ \frac{1}{x}  =  \frac{1}{ \sqrt{3}  +  \sqrt{2} } \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  }

 \large\implies \sf{ \frac{1}{x}  =  \frac{ \sqrt{3}  -  \sqrt{2} }{{( \sqrt{3})}^{2}    - {( \sqrt{2})}^{2}  } }

 \large\implies \sf{ \frac{1}{x}  =  \frac{ \sqrt{3}  -  \sqrt{2} }{{3}    - {  2}}}

 \large\implies \sf{ \frac{1}{x}  =  { \sqrt{3}  -  \sqrt{2} }}

now

 \large\sf{x +  \frac{1}{x}  =  \sqrt{3} +  \sqrt{2}  +  \sqrt{3} -  \sqrt{2}   }

 \large\fbox{ \sf{x +  \frac{1}{x}  =  2\sqrt{3}}}


Anonymous: u changed ur dp
Anonymous: cute
Similar questions